www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Primzahlgleichung
Primzahlgleichung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primzahlgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:20 Fr 02.10.2015
Autor: wauwau

Aufgabe
Seien $p,q,r,s$ verschiedene Primzahlen $>2$
Finde alle Lösungen (oder zeige,dass es keine gibt) für
[mm] $\((p-1)qrs-p(q-1)(r-1)(s-1) [/mm] = 2 $



außer der trivialen Abschätzung dass wenn oBdA [mm] $\(q
[mm] $\((p-1)qrs [/mm] > p(q-1)(r-1)(s-1) $
[mm] $(1-\frac{1}{p}) [/mm] > [mm] (1-\frac{1}{q})(1-\frac{1}{r})(1-\frac{1}{s}) [/mm] > [mm] (1-\frac{1}{q})^3 [/mm] > [mm] 1-\frac{3}{q} [/mm] $
und daher
[mm] $\(q [/mm] < 3p$

        
Bezug
Primzahlgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:33 Do 08.10.2015
Autor: leduart

Hallo
ein Hinweis:
dividiert man durch 2, so ist der zweite Summand noch immer durch mindestens 4 tb, also muss (p-1)/2 ungerade sein da qrs ug.
mit deiner Abschätzung ist dann die erste Möglichkeit p=31, q=7; r=5, s=3 und das ist keine Lösung
weiter mit p=43
vielleicht kommt man so weiter
Gruß ledum

Bezug
        
Bezug
Primzahlgleichung: (korrigiert): eine Lösung
Status: (Antwort) fertig Status 
Datum: 11:46 Fr 09.10.2015
Autor: Al-Chwarizmi


> Seien [mm]p,q,r,s[/mm] verschiedene Primzahlen [mm]>2[/mm]
>  Finde alle Lösungen (oder zeige,dass es keine gibt) für
>  [mm]\((p-1)qrs-p(q-1)(r-1)(s-1) = 2[/mm]


Miau wauwau !

Mir scheint (habe zwar noch keinen fertigen Beweis),
dass der Term

     [mm]\ L(p,q,r,s)\ =\ (p-1)qrs-p(q-1)(r-1)(s-1)[/mm]

unter den vorliegenden Voraussetzungen für p,q,r,s
stets durch 4 teilbar ist. Damit kann er den Wert 2 nicht
annehmen.

Untersuche also diesen Term auf seine Teilbarkeit durch 4 .

LG ,   Al-Chwarizmi


Korrektur:

Dass ich noch keinen Beweis für meine Vermutung finden
konnte, ist nicht überraschend, denn die Vermutung war
leider falsch !

Ich habe nun nämlich ein Lösungsquadrupel gefunden,
nämlich:

       $\ (p,q,r,s)\ =\ (11,19,29,163)$

Damit wird

      $\ L(p,q,r,s)\ =\ [mm] 10*19*29*163\, -\, [/mm] 11*18*28*162\ =\ 2$


LG ,   Al-Chw.






Bezug
                
Bezug
Primzahlgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:47 Fr 09.10.2015
Autor: wauwau

Super vielen Dank..

Bezug
        
Bezug
Primzahlgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:10 Sa 10.10.2015
Autor: rmix22

Dann darf ich nun mit
p=59, q=79, r=373 und s=599
eine weitere Lösung beisteuern - wofür auch immer sie benötigt werden mag.

Gruß RMix.



Bezug
                
Bezug
Primzahlgleichung: alle Lösungen ?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:00 Sa 10.10.2015
Autor: Al-Chwarizmi


> Dann darf ich nun mit
> p=59, q=79, r=373 und s=599
>  eine weitere Lösung beisteuern - wofür auch immer sie
> benötigt werden mag.


Hübsch

(dass ich diese Lösung noch nicht gefunden hatte, liegt
daran, dass ich nur die ersten 100 Primzahlen berücksichtigt
hatte. Da ist 599 (relativ knapp) noch nicht dabei ...)

Nur befürchte ich damit umsomehr, dass die Frage nach
allen  Lösungsquadrupeln wirklich sehr schwierig
werden könnte ...

LG ,    Al

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de