www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Prisma
Prisma < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Prisma: Maximales Volumen
Status: (Frage) beantwortet Status 
Datum: 11:46 So 15.05.2005
Autor: Lambda

Hi! Ich habe ein Problem mit dieser Aufgabe:

Aus einem 100 cm langen Stück Draht soll das Kantenmodell eines Prismas hergestellt werden, dessen Grundfläche ein gleichseitiges Dreieck ist. Für welche Abmessungen von a und b ist das Volumen des Prismas am größten?


Meine Hauptbedingung:

V= G * h

Frage: Wie soll ich die Nebenbedingung aufstellen damit ich V= maximal errechnen kann?
Wenn ich das gleichseitige Dreieck als Grundfläche errechnen möchte, fehlt mir jedoch die Höhe des dreiecks und ich habe immer noch zwei Unbekannte.

Kann mir bitte jemand weiterhelfen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Gruß Lambda

        
Bezug
Prisma: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 So 15.05.2005
Autor: Fugre


> Hi! Ich habe ein Problem mit dieser Aufgabe:
>  
> Aus einem 100 cm langen Stück Draht soll das Kantenmodell
> eines Prismas hergestellt werden, dessen Grundfläche ein
> gleichseitiges Dreieck ist. Für welche Abmessungen von a
> und b ist das Volumen des Prismas am größten?
>  
>
> Meine Hauptbedingung:
>  
> V= G * h
>  
> Frage: Wie soll ich die Nebenbedingung aufstellen damit ich
> V= maximal errechnen kann?
> Wenn ich das gleichseitige Dreieck als Grundfläche
> errechnen möchte, fehlt mir jedoch die Höhe des dreiecks
> und ich habe immer noch zwei Unbekannte.
>  
> Kann mir bitte jemand weiterhelfen?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Gruß Lambda

Hallo Lambda,

deine Hauptbedingung klingt sehr gut.
Halten wir sie kurz fest:
$V(G;h)=G*h$
Betrachten wir nun $G$, so wissen wir, dass es ein gleichseitiges
Dreieck ist und für solche Dreiecke gilt:
[mm] $A=\frac{a^2}{4}\wurzel{3}$ [/mm]
übertragen auf das Volumen erbigt dies:
[mm] $V(a;h)=\frac{a^2}{4}\wurzel{3}*h$ [/mm]

Nun denken wir über die Nebenbedingung nach:
Wir wissen, dass die Summe der Kantenlängen $1m$ ist,
also sollten wir uns überlegen, was die Summanden dieser
Addition sind. Wir haben zuerst $2$ Dreiecke, die einen Umfang
von je $3a$ haben und alle ihre Ecken sind senkrecht zur Grundfläche
mit je einer Ecke des anderen Dreiecks auf kürzestem Weg verbunden,
dieser Abstand entspricht $h$, welches gleich $b$ ist.
Für die Kantenlänge ergibt sich:
$2*3a+3b=1$
und das ist gleichzeitig Nebenbedingung.
Beachte bitte, dass wir jetzt in Metern rechnen, du müsstest bei Bedarf
wieder umrechnen.

Liebe Grüße
Fugre

Bezug
                
Bezug
Prisma: Ist es richtig?
Status: (Frage) beantwortet Status 
Datum: 14:55 So 15.05.2005
Autor: Lambda

Danke für deine Hilfe! Ich möchte nur fragen, ob diese Rechnung dann richtig ist:

V Prisma= G * h

Da als Grundfläche ein gleichseitiges Dreieck vorhanden ist, gilt für G= [mm] \bruch{a²}{4} [/mm] * [mm] \wurzel{3} [/mm]

also:

V Prisma= [mm] \bruch{a²}{4} [/mm] * [mm] \wurzel{3} [/mm] *h

da h in diesem Fall gleich b ist, gilt für meine Hauptbedingung:

V Prisma= [mm] \bruch{a²}{4} [/mm] * [mm] \wurzel{3} [/mm] * b

Nebenbedingung:

100 cm= (2 * 3 *a) + 3 * b

dies löse ich nach a auf:

a= [mm] \bruch{100-3*b}{6} [/mm]

dies setze ich dann in die Hauptbedingung ein:

V Prisma= [mm] ((\bruch{100-3*b}{6})/4 [/mm] * [mm] \wurzel{3} [/mm] * b

davon berchne ich die Ableitung und erhalte das Maximum.

V Prisma= 593,98 cm³

demnach ist a= 11,11 cm und b= 11,11 cm

Stimmt das, dass a und b gleich groß sind?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Gruß Lambda

Bezug
                        
Bezug
Prisma: Antwort
Status: (Antwort) fertig Status 
Datum: 15:04 So 15.05.2005
Autor: Max

Hallo Lambda,

das Ergebnis [mm] $a=b=\frac{100}{9}\approx [/mm] 11,11$ (in cm) ist richtig. Eigentlich musst du noch überprüfen, ob es sich dabei wirklich um ein Maximum handelt. Du wirst ja sicherlich die hinreichenden Bedingungen für Maxima kennen. (Ich denke mal du hast auch das Minimum für $a=0$, [mm] $b=\frac{100}{3}$ [/mm] entdeckt, oder?)

Max


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de