www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Problem Arithmetische Reihe
Problem Arithmetische Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Problem Arithmetische Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 Sa 01.01.2011
Autor: Platoniker

Hallo

Ich habe mich gerade vertiefend mit Folgen und Reihen beschäftigt. Dabei habe ich einmal durch folgendes Problem motiviert nachgedacht, und mich dabei extrem verwirrt.  

In meinem Skript steht für die Summenformel der Arithmetischen Reihe: [mm] ${{s}_{n}}=\frac{n\cdot \left[ 2{{a}_{1}}+\left( n-1 \right)\cdot d \right]}{2}$ [/mm]
Und in Wikipedia: [mm] $s_n [/mm] = [mm] \sum_{i=0}^n(i \cdot [/mm] d + [mm] a_0) [/mm]  =  [mm] a_0 [/mm] (n+1) + [mm] d\, \frac{n(n+1)}{2} [/mm] = [mm] (n+1)\left(a_0 + d\,\frac{n}{2}\right)$ [/mm]

Nun wollte ich zeigen, dass beide Formeln äquivalent sind.

Dies machte ich folgendermaßen:
[mm] \[\left( n+1 \right)\cdot \left( {{a}_{0}}+d\frac{n}{2} \right)=\frac{\left( n+1 \right)\cdot \left( 2{{a}_{0}}+d\cdot n \right)}{2}=\frac{n\cdot \left( 2{{a}_{0}}+d\cdot n \right)+\left( 2{{a}_{0}}+d\cdot n \right)}{2}=\frac{2{{a}_{0}}+d{{n}^{2}}+2{{a}_{0}}+{{d}_{n}}}{2}\] [/mm]
Nun versuchte ich den Term der Summenformel aus meinem Skript so umzuformen, wie die umgeformte Wikipediaformel.
Dabei dachte ich an die Zahlenfolge von 1-100 und kam es mir ganz logische vor, dass die Summenformel von Wikipedia bei 0 zu addieren begann, die Summenformel aus meinem Skript bei 1.
Also war die Differenz zwischen den Summenformeln doch nur das letzte Glied der Reihe aus meinem Skript. Dadurch kam ich zur Erkenntnis: Ich setzte bei der Summenformel aus meinem Skript für [mm] ${{a}_{1}}$ ${{a}_{0}}$ [/mm] ein und addiere [mm] ${{a}_{0}}+n\cdot [/mm] d$ da das n-te Glied einer Folge ja [mm] ${{a}_{1}}+\left( n-1 \right)\cdot [/mm] d$ ist.

Mathematisch formuliert:

[mm] $\frac{n\cdot \left[ 2{{a}_{0}}+\left( n-1 \right)\cdot d \right]+2\left( {{a}_{0}}+n\cdot d \right)}{2}=\frac{2{{a}_{0}}n+d{{n}^{2}}+2{{a}_{0}}+d\cdot n}{2}$ [/mm]

Somit ist gezeigt beide Ausdrücke sind äquivalent.

Ich dachte jedoch noch darüber nach, wodurch ich mich völlig verwirrte. Angenommen [mm] ${{a}_{0}}$ [/mm] ist gößer 0, dann würde doch das ganze nicht mehr stimmen, denn wnn ich dann das letzte Glied addiere, habe ich immer um da 1. Glied zuviel, infolgedessen ich doch das erste Gleid abziehen müsste. Würde ich das jedoch machen, würde ich nicht mehr [mm] ${{a}_{0}}+d\cdot [/mm] n$ addieren, sondern [mm] $d\cdot [/mm] n$ wodurch ich zeigen würde, dass beide Ausdrücke nicht äquivalent sind.

Bitte helft mir den Fehler zu finden!


Danke

Mit freundlichen Grüßen

Platoniker  


        
Bezug
Problem Arithmetische Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Sa 01.01.2011
Autor: MathePower

Hallo Platoniker,


> Hallo
>
> Ich habe mich gerade vertiefend mit Folgen und Reihen
> beschäftigt. Dabei habe ich einmal durch folgendes Problem
> motiviert nachgedacht, und mich dabei extrem verwirrt.  
>
> In meinem Skript steht für die Summenformel der
> Arithmetischen Reihe: [mm]{{s}_{n}}=\frac{n\cdot \left[ 2{{a}_{1}}+\left( n-1 \right)\cdot d \right]}{2}[/mm]
>  
> Und in Wikipedia: [mm]s_n = \sum_{i=0}^n(i \cdot d + a_0) = a_0 (n+1) + d\, \frac{n(n+1)}{2} = (n+1)\left(a_0 + d\,\frac{n}{2}\right)[/mm]
>  
> Nun wollte ich zeigen, dass beide Formeln äquivalent sind.
>
> Dies machte ich folgendermaßen:
> [mm] \[\left( n+1 \right)\cdot \left( {{a}_{0}}+d\frac{n}{2} \right)=\frac{\left( n+1 \right)\cdot \left( 2{{a}_{0}}+d\cdot n \right)}{2}=\frac{n\cdot \left( 2{{a}_{0}}+d\cdot n \right)+\left( 2{{a}_{0}}+d\cdot n \right)}{2}=\frac{2{{a}_{0}}+d{{n}^{2}}+2{{a}_{0}}+{{d}_{n}}}{2}\][/mm]
>  
> Nun versuchte ich den Term der Summenformel aus meinem
> Skript so umzuformen, wie die umgeformte Wikipediaformel.
> Dabei dachte ich an die Zahlenfolge von 1-100 und kam es
> mir ganz logische vor, dass die Summenformel von Wikipedia
> bei 0 zu addieren begann, die Summenformel aus meinem
> Skript bei 1.
> Also war die Differenz zwischen den Summenformeln doch nur
> das letzte Glied der Reihe aus meinem Skript. Dadurch kam
> ich zur Erkenntnis: Ich setzte bei der Summenformel aus
> meinem Skript für [mm]{{a}_{1}}[/mm] [mm]{{a}_{0}}[/mm] ein und addiere
> [mm]{{a}_{0}}+n\cdot d[/mm] da das n-te Glied einer Folge ja
> [mm]{{a}_{1}}+\left( n-1 \right)\cdot d[/mm] ist.
>
> Mathematisch formuliert:
>
> [mm]\frac{n\cdot \left[ 2{{a}_{0}}+\left( n-1 \right)\cdot d \right]+2\left( {{a}_{0}}+n\cdot d \right)}{2}=\frac{2{{a}_{0}}n+d{{n}^{2}}+2{{a}_{0}}+d\cdot n}{2}[/mm]
>  
> Somit ist gezeigt beide Ausdrücke sind äquivalent.
>
> Ich dachte jedoch noch darüber nach, wodurch ich mich
> völlig verwirrte. Angenommen [mm]{{a}_{0}}[/mm] ist gößer 0, dann
> würde doch das ganze nicht mehr stimmen, denn wnn ich dann
> das letzte Glied addiere, habe ich immer um da 1. Glied
> zuviel, infolgedessen ich doch das erste Gleid abziehen
> müsste. Würde ich das jedoch machen, würde ich nicht
> mehr [mm]{{a}_{0}}+d\cdot n[/mm] addieren, sondern [mm]d\cdot n[/mm] wodurch
> ich zeigen würde, dass beide Ausdrücke nicht äquivalent
> sind.
>  
> Bitte helft mir den Fehler zu finden!
>


Bei Wikipedia beginnt die Reihe mit [mm]a_{0}[/mm],
bei Deinem Skript jedoch mit [mm]a_{1}[/mm].

Sowohl Wikipedia als auch Dein Skript summieren bis zur
Obergrenze [mm]a_{0}+n*d[/mm] bzw. [mm]a_{1}+\left(n-1\right)*d[/mm]


>
> Danke
>
> Mit freundlichen Grüßen
>
> Platoniker  

>


Gruss
MathePower  

Bezug
                
Bezug
Problem Arithmetische Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:04 Sa 01.01.2011
Autor: Platoniker

Hallo

Danke für die Antwort. Nach einer kleinen Pause hat sich mein Problem gelöst!



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de