www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Problem Matrizen
Problem Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Problem Matrizen: Bitte helft mir!
Status: (Frage) beantwortet Status 
Datum: 16:57 Do 25.11.2004
Autor: kleines-sax

Hallo, ich habe hier eine Aufgabe, mit der ich nicht zu rande komme

Sei A,B [mm] \in \IR [/mm] und [mm] E_{n} [/mm] die Einheitsmatrix in  [mm] \IR^{nxn}. [/mm]
a) Sei A+B regulär. Man zeige  
     A-A(A+B)^(-1)A=B-B(A+B)^(-1)B.

b) Es gelte [mm] A^3+3A^2+2A+5*E_{n}. [/mm] Zeigen Sie, dass A invertierbar ist.

c) Sei [mm] E_{n}-AB [/mm] regulär. Man zeige
    [mm] (E_{n}-AB)^{-1}=E_{n}+A(E_{n}-BA)^{-1} [/mm]

Könnt ihr mir da helfen, wäre super!

        
Bezug
Problem Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:00 Do 25.11.2004
Autor: kleines-sax

mir ist da ein Fehler unterlaufen bei c)

es muss heißen:
[mm] (E_{n}-AB)^{-1}=E_{n}+A(E_{n}-BA)^{-1}B [/mm]

Bezug
        
Bezug
Problem Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Fr 26.11.2004
Autor: Stefan

Hallo!

Ich rechne dir die a) mal vor. Bei der b) fehlt etwas (dort steht keine Gleichung) und die c) versuchst du bitte selber und postest wenigstens einen Rechenversuch.

zur a):

Aus

[mm] $(A+B)(A+B)^{-1} [/mm] = [mm] E_n$ [/mm]

folgt:

[mm] $A(A+B)^{-1} [/mm] + [mm] B(A+B)^{-1} [/mm] = [mm] E_n [/mm] = [mm] AA^{-1}$. [/mm]

Multipliziert man von rechts mit $A$, so erhält man:

[mm] $A(A+B)^{-1}A [/mm] + [mm] B(A+B)^{-1}A [/mm] = A$.

Es folgt also:

(1) [mm] $A-A(A+B)^{-1}A [/mm] = [mm] B(A+B)^{-1}A$. [/mm]

Aber es gilt auch:

(2) $B = [mm] B(A+B)^{-1}(A+B) [/mm] = [mm] B(A+B)^{-1}A [/mm] + [mm] B(A+B)^{-1}B$. [/mm]

Aus (1) und (2) folgt:

$A - [mm] A(A+B)^{-1}A [/mm] = B - [mm] B(A+B)^{-1}B$. [/mm]

Ganz schön tricky... ;-)

Liebe Grüße
Stefan

Bezug
                
Bezug
Problem Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 Fr 26.11.2004
Autor: kleines-sax

ja tut mir leid bei b) müßte stehen

[mm] A^3+3A^2+2A+5E_{n}=0 [/mm]

also ich denke man muss hier zeigen das [mm] AA^{-1}=E_{n} [/mm] gilt
dazu könnte man ja [mm] 5E_{n} [/mm] auf die andere zeige bringen und durch -5 teilen.

[mm] -1/5A^3-3/5A^2-2/5A=E_{n} [/mm]
jetzt könnte man ja A auklammern, aber richtig weiterhilft mir das nicht.

Bezug
                        
Bezug
Problem Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:56 Fr 26.11.2004
Autor: Stefan

Hallo!

>  ja tut mir leid bei b) müßte stehen
>  
> [mm]A^3+3A^2+2A+5E_{n}=0 [/mm]
>  
> also ich denke man muss hier zeigen das [mm]AA^{-1}=E_{n}[/mm]
> gilt
>  dazu könnte man ja [mm]5E_{n}[/mm] auf die andere zeige bringen und
> durch -5 teilen.
>  
> [mm]-1/5A^3-3/5A^2-2/5A=E_{n} [/mm]

Bis dahin: [klatsch]

>  jetzt könnte man ja A auklammern, aber richtig weiterhilft
> mir das nicht.

Doch, natürlich! :-)

Es gilt:

$A [mm] \cdot \left(-\frac{1}{5}A^2 - \frac{3}{5}A - \frac{2}{5} E_n \right) [/mm] = [mm] E_n$, [/mm]

d.h. es gibt eine Matrix $B$ mit [mm] $AB=E_n$, [/mm] nämlich:

$B=   [mm] -\frac{1}{5}A^2 [/mm] - [mm] \frac{3}{5}A [/mm] - [mm] \frac{2}{5} E_n$. [/mm]

Dies bedeutet aber doch gerade, dass $A$ invertierbar ist, mit $B$ als inverser Matrix [mm] $A^{-1}$. [/mm]

Leieb Grüße
Stefan


Bezug
                                
Bezug
Problem Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:48 Fr 26.11.2004
Autor: kleines-sax

ahhh alles klar, dankeschön

und bei c) da muss ich sicherlich wieder mit irgendwas multiplizieren, hab es noch nicht raus gefunden, werde das aber noch weiter versuchen.

nochmal danke für die hilfe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de