www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Problem bei einem Spielautomat
Problem bei einem Spielautomat < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Problem bei einem Spielautomat: Kombinatorik
Status: (Frage) beantwortet Status 
Datum: 00:03 Do 10.04.2008
Autor: bdaniel

Aufgabe
Ein Spielautomat hat drei scheiben [mm] a_{1}; a_{2};a_{3} [/mm] die unabhängig voneinander laufen mit den zahlen von 0 bis 9 aufgedruckt

Berechnen sie folgende Wahrscheinlichkeiten

A: [mm] a_{2} [/mm] = 7  ( mittlere Scheibe zeigt eine 7)
B: [mm] a_{1}\not= a_{2}\not=a_{3} [/mm] (alle Zahlen sind verschieden)
C: alle zahlen sind verschieden mit [mm] a_{1}< a_{2}

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Folgendes Spiel:

Kann mir einer erklären warum bei c denn P(C)=1/6 B rauskommt

mir is klar das es um die geeigneten kombinationen von den Scheiben geht und das die 3! da reinspielt

wäre sehr dankbar. Ich hab ja den Ansatz dass es [mm] \vektor{10\\3} [/mm] günstige Möglichkeiten für das Ereignis c gibt. Aber ich kann meine Vermutung mit keiner Begründung stützen

        
Bezug
Problem bei einem Spielautomat: Antwort
Status: (Antwort) fertig Status 
Datum: 00:30 Do 10.04.2008
Autor: Teufel

Hi!

Zu c) würde mir nur abzählen einfallen. Nicht so professionell, hier aber überschaubar.

[mm] a_1=... [/mm]

0: 0 Mögl.
1: 0 Mögl.
2: 1 Mögl.
3: 3 Mögl.
4: 6 Mögl.
5: 10 Mögl.

Kommen dir diese Zahlen bekannt vor? Wenn ja, kannst du leicht bis 9 fortsetzen und alles aufaddieren! Beweisen kann ich dir gerade nicht, dass diese Formel gilt, aber na ja ;)

Edit:
Höchstens so:

Fangen wir mal mit [mm] a_1=2 [/mm] an, dann [mm] a_1=3 [/mm] und dann [mm] a_1=4. [/mm]

1: 210

2: 321 320 310

3: 432 431 430 421 420 410

...

Wie du siehst, bleiben immer die Kombinationen von [mm] a_2 [/mm] und [mm] a_3 [/mm] erhalten und es kommen n neue dazu. Eine Folge dazu könnte dann [mm] b_{n}=b_{n-1}+n, b_1=1 [/mm] lauten.


Edit 2: Bei meinen Beispielen ist [mm] a_1 [/mm] aus versehen  immer die größte Zahl, anstatt die kleinste. Aber das Prinzip bleibt gleich!
[anon] Teufel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de