www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Problem beim Beweis
Problem beim Beweis < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Problem beim Beweis: Erklärung
Status: (Frage) beantwortet Status 
Datum: 13:21 Sa 29.01.2011
Autor: SolRakt

Hallo.

Ich verstehe irgendwie den Beweis zu folgendem Satz nicht. Und zwar:

[mm] b_{n} \to [/mm] b [mm] \Rightarrow |b_{n}| \to [/mm] |b|

Der Beweis sieht laut Skript wie folgt aus:

| [mm] |b_{n}| [/mm] - |b| | [mm] \le |b_{n} [/mm] - b| [mm] \to [/mm] 0

Und damit soll der Satz schon bewiesen sein. Ich sehs aber irgendwie nicht. Danke schonmal. Gruß




        
Bezug
Problem beim Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 13:31 Sa 29.01.2011
Autor: pelzig

Zu zeigen ist [mm]|b_n|\to |b|[/mm], was definiert ist als [mm]||b_n|-|b||\to 0[/mm]. Die umgekehrte Dreiecksungleichung besagt aber gerade, dass
[mm]0\le||b_n|-|b||\le|b_n-b|[/mm]
ist, und die rechte Seite konvergiert nach Voraussetzung gegen 0, weil ja [mm]b_n\to b[/mm] konvergiert, also konvergiert auch [mm]||b_n|-|b||[/mm] gegen [mm]0[/mm] nach dem "Sandwich-Lemma" oder wie das bei euch heißt. Wo ist das Problem?

Gruß, Robert



Bezug
                
Bezug
Problem beim Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:50 Sa 29.01.2011
Autor: SolRakt

Hmm..hast recht. Ist alles klar. Hab das irgendwie nicht gesehn. Kannst du oder jemand anders mir zeigen, warum die Umkehrung für b = 0, also Grenzwert 0, gilt. Danke vielmals.

Bezug
                        
Bezug
Problem beim Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 13:56 Sa 29.01.2011
Autor: pelzig

Wenn [mm] $|b_n|$ [/mm] gegen [mm] $0\in\IR$ [/mm] konvergiert, bedeutet das nach definition, dass [mm] $b_n$ [/mm] gegen $b=0$ konvergiert.

Gruß, Robert


Bezug
                                
Bezug
Problem beim Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:59 Sa 29.01.2011
Autor: SolRakt

Super, danke dir. Habs verstanden ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de