www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Problem mit Begriffen
Problem mit Begriffen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Problem mit Begriffen: Frage
Status: (Frage) beantwortet Status 
Datum: 15:23 Mi 09.03.2005
Autor: Baweg

Hi, habe in meinem Heft folgende Aufzeichnungen gefunden und hab null Ahnung was das nochmal war und finde auch nix dazu, was mir weiter hilft, könnte mir jemand kurz erklären was die bedeuten und wozu man das brauch!?

Ergebnismenge (dann dieses Ohm-Zeichen)
Ohm = {(e1,e2,e3)|e; [mm] \in [/mm] {1;2;3;4;5;6}}
|Ohm| = 216

Zufallsgröße X ist eine Funktion
D(x) = Ohm, w(x) = {-1;1;2;3}
Einzelwahrscheinlichkeiten pi = P(x=xi)
Verteilungsfunktion F(x) = P(x [mm] \le [/mm] x) mit D(F) = [mm] \IR [/mm] , W(F)  [mm] \subseteq [/mm] [0;1]
Erwartungswerte: E(x) =  [mm] \summe_{i=1}^{n} [/mm] xi * pi

Also bis auf den Erwartungswert weiß ich davon garnichts....

        
Bezug
Problem mit Begriffen: Hilfestellung
Status: (Antwort) fertig Status 
Datum: 17:25 Mi 09.03.2005
Autor: Zwerglein

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hi, Baweg,

> Hi, habe in meinem Heft folgende Aufzeichnungen gefunden
> und hab null Ahnung was das nochmal war und finde auch nix
> dazu, was mir weiter hilft, könnte mir jemand kurz erklären
> was die bedeuten und wozu man das brauch!?
>  
> Ergebnismenge (dann dieses Ohm-Zeichen)

Dieses Zeichen ist der griechsche Buchstabe "groß Omega" und ist nur rein zufällig identisch mit dem Buchstaben für das physikalische "Ohm": damit hat's logischerweise nix zu tun. Er kürzt einfach die Menge ab, in der alle Ergebnisse stehen, die bei einem Zufallsexperiment rauskommen können.

>  Ohm = {(e1,e2,e3)|e; [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{1;2;3;4;5;6}}

Nun: Diese Ergebnismenge (oder Ergebnisraum) sieht so aus, als gehörte er zu folgendem Zufallsexperiment:
Drei unterscheidbare Würfel werden geworfen.
Z.B. (3, 4, 1) steht für das Ergebnis: der 1. Würfel zeigt die Augenzahl 3, der zweite die 4, der dritte die 1.

>  |Ohm| = 216

Lies: "Mächtigkeit der Ergebnismenge Omega". Damit ist gemeint: Wieviele Ergebnisse sind denn nun insgesamt möglich?
Nun: Der 1. Würfel hat insgesamt 6 mögliche Augenzahlen, der zweite auch, der dritte wieder. Wie man leicht überlegen kann, gibt's demnach 6*6*6 = 216 verschiedene Ergebnisse (wobei es nicht auf die Augensumme ankommt, sondern viel genauer darauf, welcher Würfel genau welche Zahl zeigt!!!)
  

> Zufallsgröße X ist eine Funktion
>  D(x) = Ohm, w(x) = {-1;1;2;3}

Also hier hast Du möglicherweise ein neues Beispiel genommen.
Da ich nicht weiß, was hier die Ergebnismenge war, kann ich Dir auch nicht 100%ig sicher erklären, wie die Zufallsgröße zustande kommt!
Vielleicht ist es so gewesen, dass ein Spieler beim Werfen der drei Würfel immer 1 Euro verliert, wenn die geworfene Augensumme (maximal ja 18) kleiner als 16 ist (X=-1), er aber 1 Euro gewinnt (X=+1), wenn er 16 wirft, 2 Euro, wenn er 17 wirft, 3 Euro, wenn er 18 wirft.

>  Einzelwahrscheinlichkeiten pi = P(x=xi)

Die wären bei meinem Beispiel: P(X=3) = \bruch{1}{216}
P(X=2) = \bruch{3}{216}
P(X=1) = \bruch{6}{216}
P(X=-1) = \bruch{206}{216}
(Hoffentlich hab' ich mich nicht vertan!)

>  Verteilungsfunktion F(x) = P(x [mm]\le[/mm] x) mit D(F) = [mm]\IR[/mm] ,
> W(F)  [mm]\subseteq[/mm] [0;1]

Bei der Verteilungsfunktion werden die Wahrscheinlichkeiten der Wahrscheinlichkeitsverteilung P(X=x) sukzessive aufsummiert. Man berechnet demnach nicht mehr z.B. die Wahrscheinlichkeit, "genau 2 Euro zu gewinnen", sondern die Wahrscheinlichkeit "höchstens 2 Euro z gewinnen".
(Genaueres bitte im Fachbuch nachlesen. Die zugehörige Wertetabelle krieg' ich hier nun wirklich nicht unter!)

>  Erwartungswerte: E(x) =  [mm]\summe_{i=1}^{n}[/mm] xi * pi
>  
> Also bis auf den Erwartungswert weiß ich davon
> garnichts....
>  

Dann weißt Du ja sicher auch, dass man zum Erwartungswert auch "Durchschnitt" oder "Mittel" sagt und dass man neben diesem Wert oft noch die sog. "Standardabweichung" berechnet!

Schnellkurs in die Stochastik beendet!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de