www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Problem mit Quotientenkriteriu
Problem mit Quotientenkriteriu < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Problem mit Quotientenkriteriu: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:29 Fr 23.11.2012
Autor: AlbertHerum

Aufgabe
[mm] a_{n}:=\bruch{\wurzel[n]{n}}{n!} [/mm]
Zeigen Sie durch das Quotientenkriterium, dass [mm] \summe_{n=1}^{\infty} a_{n} [/mm] konvergent ist.

Hallo,

das QK ist so definert:
[mm] |\bruch{a_{n+1}}{a_{n}}| [/mm]

Wenn ich das entsprechende [mm] a_{n} [/mm] einsetze sieht das so aus:
(Da [mm] a_{n} [/mm] immer positiv ist lasse ich den Betrag weg)

[mm] \bruch{\wurzel[n+1]{n+1}}{(n+1)!}*\bruch{(n)!}{\wurzel[n]{n}} [/mm]

[mm] =\bruch{\wurzel[n+1]{n+1}}{n!(n+1)}*\bruch{(n)!}{\wurzel[n]{n}} [/mm]

[mm] =\bruch{\wurzel[n+1]{n+1}}{(n+1)*\wurzel[n]{n}} [/mm]

Wie mache ich jetzt am besten weiter...

Kann mir jemand ein Tipp geben :)


        
Bezug
Problem mit Quotientenkriteriu: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 Fr 23.11.2012
Autor: reverend

Hallo Herumalberer, ;-)

Du bist doch fast fertig.

> [mm]a_{n}:=\bruch{\wurzel[n]{n}}{n!}[/mm]
>  Zeigen Sie durch das Quotientenkriterium, dass
> [mm]\summe_{n=1}^{\infty} a_{n}[/mm] konvergent ist.
>  Hallo,
>  
> das QK ist so definert:
>  [mm]|\bruch{a_{n+1}}{a_{n}}|[/mm]

Na, da gehört noch ein bisschen mehr dazu. Z.B. eine Grenzwertbildung für [mm] n\to\infty [/mm] (genauer: eine Aussage für "fast alle" n) sowie ein Wertebereich, für den mit dem Kriterium überhaupt eine Entscheidung zu treffen ist.

> Wenn ich das entsprechende [mm]a_{n}[/mm] einsetze sieht das so
> aus:
>  (Da [mm]a_{n}[/mm] immer positiv ist lasse ich den Betrag weg)
>  
> [mm]\bruch{\wurzel[n+1]{n+1}}{(n+1)!}*\bruch{(n)!}{\wurzel[n]{n}}[/mm]
>  
> [mm]=\bruch{\wurzel[n+1]{n+1}}{n!(n+1)}*\bruch{(n)!}{\wurzel[n]{n}}[/mm]
>  
> [mm]=\bruch{\wurzel[n+1]{n+1}}{(n+1)*\wurzel[n]{n}}[/mm]
>  
> Wie mache ich jetzt am besten weiter...
>  
> Kann mir jemand ein Tipp geben :)

Akkusativ: einen!

Wenn Du Spaß dran hast, kannst Du noch zeigen, dass [mm] \wurzel[n]{n}>\wurzel[n+1]{n+1} [/mm] ist. Nötig ist das hier aber nicht.

Für [mm] n\to\infty [/mm] gehen beide Wurzeln gegen 1 und damit der gesamte Bruch gegen 0.

Grüße
reverend


Bezug
        
Bezug
Problem mit Quotientenkriteriu: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:47 Fr 23.11.2012
Autor: Marcel

Hallo,

> [mm]a_{n}:=\bruch{\wurzel[n]{n}}{n!}[/mm]
>  Zeigen Sie durch das Quotientenkriterium, dass
> [mm]\summe_{n=1}^{\infty} a_{n}[/mm] konvergent ist.
>  Hallo,
>  
> das QK ist so definert:
>  [mm]|\bruch{a_{n+1}}{a_{n}}|[/mm]

Quatsch. Seit wann ist ein Kriterium ein Term, der zudem keine Aussage
beinhaltet?

Für das QK ist es sinnvoll, sich die obigen Quotienten anzugucken. Zudem:
Ein Kriterium ist KEINE Definition. Achte bitte auf Deine Ausdrucksweise,
sie könnte Dir irgendwann zum Verhängnis werden. Sauberer arbeiten,
bitte!!

Gruß,
  Marcel

Bezug
                
Bezug
Problem mit Quotientenkriteriu: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:53 Fr 23.11.2012
Autor: AlbertHerum

Ja sorry, dass ich mich nicht formal korrekt ausgedrückt habe.
Was QK ist weiß ich, genauso wie ihr.
QK:
Wenn [mm]|\bruch{a_{n+1}}{a_{n}}|[/mm] <1 ist die Reihe konvergent
ISt [mm]|\bruch{a_{n+1}}{a_{n}}|[/mm] >1 ist die Reihe divergent
für =1 ist keine Aussage möglich.

@reverend: Habe gerade keine Ahnung was mit mir da los war. Ist ja eigentlich echt trivial :D

Bezug
                        
Bezug
Problem mit Quotientenkriteriu: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:08 Sa 24.11.2012
Autor: fred97


> Ja sorry, dass ich mich nicht formal korrekt ausgedrückt
> habe.
>  Was QK ist weiß ich, genauso wie ihr.
>  QK:
>  Wenn [mm]|\bruch{a_{n+1}}{a_{n}}|[/mm] <1 ist die Reihe konvergent


Auch das ist Unsinn. Für wieviele n soll das gelten ? Für eins ? Für 23 n ? Für alle n ? .......


Nimm [mm] a_n=1/n. [/mm]


Formuliere das Kriterium bitte korrekt.

FRED

>  ISt [mm]|\bruch{a_{n+1}}{a_{n}}|[/mm] >1 ist die Reihe divergent
>  für =1 ist keine Aussage möglich.
>  
> @reverend: Habe gerade keine Ahnung was mit mir da los war.
> Ist ja eigentlich echt trivial :D


Bezug
                        
Bezug
Problem mit Quotientenkriteriu: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:03 Sa 24.11.2012
Autor: Marcel

Hallo,

> Ja sorry, dass ich mich nicht formal korrekt ausgedrückt
> habe.
>  Was QK ist weiß ich, genauso wie ihr.
>  QK:
>  Wenn [mm]|\bruch{a_{n+1}}{a_{n}}|[/mm] <1 ist die Reihe konvergent
>  ISt [mm]|\bruch{a_{n+1}}{a_{n}}|[/mm] >1 ist die Reihe divergent
>  für =1 ist keine Aussage möglich.

wie Fred schon sagte: Anscheinend weißt Du's nicht. Es gibt eine
Formulierung mit [mm] $\limsup$ [/mm] (oder eingeschränkter: mit [mm] $\lim$), [/mm] an der
wärst Du schon nahe dran, aber liefest immer noch vorbei.

Wenn es aber eine "für fast alle [mm] $n\,$" [/mm] Formulierung werden sollte, dann
müßte da irgendwie noch, neben der Tatsache, dass das zu erwähnen
wäre, die Existenz einer Zahl [mm] $\ge 0\,$ [/mm] und echt kleiner als [mm] $1\,$ [/mm] gefordert
werden.

Und ja: Ich weiß, was das QK ist und was es besagt. Dass Deine
Formulierung falsch ist, hat Fred ja schon mit [mm] $\sum_n [/mm] 1/n$ begründet.

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de