Probleme bei Kettenregel < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:16 Sa 16.06.2007 | Autor: | Leader |
Hallo!
Ich wollte einmal nachvollziehen, warum e^3x abgeleitet gerade 3e^3x ergibt. Ich bin aber mit der Kettenregel (und die schien dafür sinnvoll) nicht wirklich draufgekommen und vermute, dass ich da allg. Fehler gemacht hab. Kann mir da mal jemand helfen?
Ich hab zunächst wie vorgegeben den inneren und äußeren Teil gebildet und abgeleitet. Also:
i = e
i' = 1
a = i^3x
a' = 3i
Da komm ich dann mit a' * i' jedoch nur auf 3e. Das heißt, es fehlt noch das x. Liegt der Fehler daher vielleicht beim Ableiten von a, das heißt, ist a' vielleicht [mm] 3i^x? [/mm] Wenn ja, warum ist das so, wenn nein, wie kommt man auf die richtige Lösung.
Danke im Voraus,
Leader.
PS: kann man immer allg. sagen, dass die Ableitung von e^nx = n [mm] e^x [/mm] ist? Hab darüber in Formelsammlungen nichts gefunden.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:27 Sa 16.06.2007 | Autor: | Hund |
Hallo,
ich glaube du hast ein Verständnisproblem mit der Kettenregel.
Angenommen, du hast h(x)=f(g(x))=(f verkettet g)(x), wobei f,g differenzierbar, dann gilt h´(x)=f´(g(x))*g´(x)
Deine Funktion ist [mm] e^{3x}. [/mm] Das lässt sich schreiben als:
[mm] e^{3x}=f(g(x)) [/mm] mit:
[mm] f(y)=e^{y}
[/mm]
g(x)=3x
Es gilt [mm] f´(y)=e^{y} [/mm] für die Ableitung von f und g´(x)=3 für die Ableitung von f. (Ich weis nicht, ob man die Striche bei f und g sieht, gemeint ist im folgenden auch immer f(Strich) und g(Strich).)
Nach der Kettenregel gilt dann also:
[mm] f´(g(x))*g´(x)=(e^{y})(3x)*3=e^{3x}*3=3e^{3x} [/mm] für die Ableitung deiner Funktion.
Ich hoffe, es hat dir geholfen.
Gruß
Hund
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:51 Sa 16.06.2007 | Autor: | Leader |
Danke für die schnelle Antwort.
Ich glaube mein Fehler war, dass ich nicht bedacht hatte, dass die Ableitung von [mm] e^y [/mm] auch [mm] e^y [/mm] ist.
FG,
Leader.
|
|
|
|