www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Probleme beim lösen
Probleme beim lösen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Probleme beim lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Sa 30.04.2005
Autor: Nightburner

Hallo,
ich habe eine Frage zur folgender Aufgabe:
5. Es sei A [mm] =\begin{pmatrix}3 & -1 \\-1 & 3 \end{pmatrix} [/mm] .
(a) Wie lauten die Eigenwerte von A?
(b) Ermitteln Sie zu den Eigenwerten die zugehörigen Eigenvektoren.
Wie lauten die entsprechenden normierten Eigenvektoren [mm] \vec [/mm] e1
und [mm] \vec [/mm] e2.
Was können Sie über die Lage der beiden Eigenvektoren aussagen? (Vergleichen Sie
das Ergebnis mit dem der vorigen Aufgabe.)
(c) Bilden Sie aus den Eigenvektoren die Matrix B, indem Sie die normierten Eigenvektoren
spaltenweise eintragen. Ermitteln Sie dann [mm] B^{-1} [/mm] wie in Aufgabe 3. Was fällt Ihnen auf?
(d) Berechnen Sie  [mm] B^{-1} [/mm] · A · B. Was fällt Ihnen auf?

Meine Ergebnisse:
a) [mm] \lambda_1 [/mm] = 3-1 =2     , [mm] \lambda_2 [/mm] = 3+1 =4
b) [mm] \vec e_1 [/mm] =  [mm] \begin{pmatrix}t\\ t \end{pmatrix} [/mm]
[mm] \vec e_1^{0} [/mm] =  [mm] 1/t\wurzel{2} \begin{pmatrix}t\\ t \end{pmatrix} [/mm]

[mm] \vec e_2 [/mm] =  [mm] \begin{pmatrix}t\\ -t \end{pmatrix} [/mm]
[mm] \vec e_2^{0} [/mm] =  [mm] 1/t\wurzel{2} \begin{pmatrix}t\\ -t \end{pmatrix} [/mm]

<  [mm] \begin{pmatrix}t\\ t \end{pmatrix}, \begin{pmatrix}t\\ -t \end{pmatrix}> [/mm] = 0 ->sind normal zueinander

c) B=  [mm] \begin{pmatrix}t & t\\ t &-t \end{pmatrix} [/mm]
[mm] B^{-1}= \begin{pmatrix}\wurzel{2}/2 & \wurzel{2}/2 \\ \wurzel{2}/2 &-\wurzel{2}/2 \end{pmatrix} [/mm]
  
d) [mm] B^{-1}*A*B= \begin{pmatrix}\wurzel{2}/2 & \wurzel{2}/2 \\ \wurzel{2}/2 &-\wurzel{2}/2 \end{pmatrix}*=\begin{pmatrix}3 & -1 \\-1 & 3 \end{pmatrix}*\begin{pmatrix}t & t\\ t &-t \end{pmatrix} [/mm]


Stimmen die Ergebnisse von a-c ??
Was sollte ich bei d) erkennen ??????
Ich würde mich freuen, wenn mir jemand helfen würde
Grüße Peter


        
Bezug
Probleme beim lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 Sa 30.04.2005
Autor: Paulus

Hallo Peter

> Hallo,
>  ich habe eine Frage zur folgender Aufgabe:
>  5. Es sei A [mm]=\begin{pmatrix}3 & -1 \\-1 & 3 \end{pmatrix}[/mm]
> .
>  (a) Wie lauten die Eigenwerte von A?
>  (b) Ermitteln Sie zu den Eigenwerten die zugehörigen
> Eigenvektoren.
>  Wie lauten die entsprechenden normierten Eigenvektoren
> [mm]\vec[/mm] e1
>  und [mm]\vec[/mm] e2.
>  Was können Sie über die Lage der beiden Eigenvektoren
> aussagen? (Vergleichen Sie
>  das Ergebnis mit dem der vorigen Aufgabe.)
>  (c) Bilden Sie aus den Eigenvektoren die Matrix B, indem
> Sie die normierten Eigenvektoren
>  spaltenweise eintragen. Ermitteln Sie dann [mm]B^{-1}[/mm] wie in
> Aufgabe 3. Was fällt Ihnen auf?
>  (d) Berechnen Sie  [mm]B^{-1}[/mm] · A · B. Was fällt Ihnen auf?
>  
> Meine Ergebnisse:
>  a) [mm]\lambda_1[/mm] = 3-1 =2     , [mm]\lambda_2[/mm] = 3+1 =4

[ok]

>  b) [mm]\vec e_1[/mm] =  [mm]\begin{pmatrix}t\\ t \end{pmatrix}[/mm]
>  [mm]\vec e_1^{0}[/mm]
> =  [mm]1/t\wurzel{2} \begin{pmatrix}t\\ t \end{pmatrix}[/mm]
>  

Ich weiss jetzt nicht so genau, warum du "Hoch null" schreibst. [verwirrt]

Ich würde eher für einen nichtnormierten Eigenvektor [mm] $e_1'$ [/mm] schreiben, und dann für den normierten [mm] $e_1$ [/mm]

Dann weiss ich nicht so recht, was denn dein $t_$ noch zu suchen hat. Das kürzt sich doch weg!

Also einfach: [mm] $e_1=\vektor{1/\wurzel{2} \\ 1/\wurzel{2}}$ [/mm]

Oder auch: [mm] $e_1=\vektor{\wurzel{2}/2 \\ \wurzel{2}/2}$ [/mm]

> [mm]\vec e_2[/mm] =  [mm]\begin{pmatrix}t\\ -t \end{pmatrix}[/mm]
>  [mm]\vec e_2^{0}[/mm]
> =  [mm]1/t\wurzel{2} \begin{pmatrix}t\\ -t \end{pmatrix}[/mm]
>  

Hier gilt das Gleiche wie oben. Ich würde noch darauf achten, dass die Orientierung erhalten bleibt. Also statt

[mm] $e_2=\vektor{\wurzel{2}/2 \\ -\wurzel{2}/2}$ [/mm]

würde ich eher

[mm] $e_2=\vektor{-\wurzel{2}/2 \\ \wurzel{2}/2}$ [/mm]

nehmen.

> <  [mm]\begin{pmatrix}t\\ t \end{pmatrix}, \begin{pmatrix}t\\ -t \end{pmatrix}>[/mm]
> = 0 ->sind normal zueinander
>  

[ok]

> c) B=  [mm]\begin{pmatrix}t & t\\ t &-t \end{pmatrix}[/mm]
>  [mm]B^{-1}= \begin{pmatrix}\wurzel{2}/2 & \wurzel{2}/2 \\ \wurzel{2}/2 &-\wurzel{2}/2 \end{pmatrix}[/mm]
>  
>  

Hier hat natürlich das $t_$ auch nichts mehr zu suchen.

Nach deiner Lösung also:

[mm] $B=\begin{pmatrix}\wurzel{2}/2 & \wurzel{2}/2\\ \wurzel{2}/2 &-\wurzel{2}/2 \end{pmatrix}$ [/mm]

Nach meiner obigen Anmerkung aber eher:

[mm] $B=\begin{pmatrix}\wurzel{2}/2 & -\wurzel{2}/2 \\ \wurzel{2}/2 &\wurzel{2}/2 \end{pmatrix}$ [/mm]

Diese Matrix hat nämlich wie die Matrix $A_$ eine positive Determinante.

Dann ergibt sich:

[mm] $B^{-1}=\begin{pmatrix}\wurzel{2}/2 & \wurzel{2}/2\\ -\wurzel{2}/2 &\wurzel{2}/2 \end{pmatrix}$ [/mm]

> d) [mm]B^{-1}*A*B= \begin{pmatrix}\wurzel{2}/2 & \wurzel{2}/2 \\ \wurzel{2}/2 &-\wurzel{2}/2 \end{pmatrix}*=\begin{pmatrix}3 & -1 \\-1 & 3 \end{pmatrix}*\begin{pmatrix}t & t\\ t &-t \end{pmatrix}[/mm]
>  
>
> Stimmen die Ergebnisse von a-c ??
>  Was sollte ich bei d) erkennen ??????
>  Ich würde mich freuen, wenn mir jemand helfen würde
>  Grüße Peter
>  

Ich schlage vor, dass du d) nochmals durchrechnest. Vielleicht fällt dir dann etwas auf? Du musst aber schon ausmultiplizieren, sonst wird wohl nix mit auffallen! ;-)

Schreibe uns doch einfach dein Ergebnis. Wir finden dann sicher schon heraus, was es da auffälliges zu entdecken gibt. Ich denke aber, dass du das selber auch merkst! :-)

Mit lieben Grüssen

Paul


Bezug
                
Bezug
Probleme beim lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:48 So 01.05.2005
Autor: Nightburner

Hallo,
danke für deine Hilfe .
Das das t rausfliegt habe ich leider nicht gesehen :-( .
Zu der hoch Null kann ich nur sagen, dass ich das so beigebracht bekommen hab. ;-)
danke für deinen support

Grüße Peter


Bezug
                
Bezug
Probleme beim lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:06 So 01.05.2005
Autor: Nightburner

Hallo,
ich habe vergessen die Ergebnisse zu posten
[mm] B^{-1}*A*B= \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix} [/mm]  =  [mm] \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} [/mm] = E

Stimmen die Ergenisse?
danke
Grüße Peter

Bezug
                        
Bezug
Probleme beim lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:57 Di 03.05.2005
Autor: Hexe


> Hallo,
>  ich habe vergessen die Ergebnisse zu posten
>  [mm]B^{-1}*A*B= \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}[/mm]  

    [mm] \not= [/mm]

> [mm]\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}[/mm] = E

[stop]   Da bekommst du wunderschön eine Diagonalmatrix mit den Eigenwerten in der Diagonalen und du behauptest die wäre gleich E?  Also da die Diagonaleinträge verschieden sind ist das oben falsch und selbst wenn die Lösung [mm] \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} [/mm] lauten würde, wäre sie gleich aE und nicht gleich E. Mit solchen Sachen musst du vorsichtig sein.  Also die erste Matrix ist das ganze Ergebnis das du bekommen sollst. :-)
Liebe Grüße
Hexe

Bezug
                                
Bezug
Probleme beim lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:55 Mi 04.05.2005
Autor: Nightburner

ok
danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de