www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Probleme mit H-Methode
Probleme mit H-Methode < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Probleme mit H-Methode: 2 ungelöste Aufgaben
Status: (Frage) beantwortet Status 
Datum: 14:10 So 07.05.2006
Autor: Francis553

Aufgabe 1
Berechne die Tangentensteigung im Punkt P nach der h-Methode:

f(x)=(x-2)²-6
P(1 ; y)

Aufgabe 2
Berechne die Tangentensteigung im Punkt P nach der h-Methode:

f(x)=(x-1)²
P(3 ; y)

Ich hab schon mehrmals versucht diese Aufgaben zu lösen. Jedoch bekomme ich am Ende immer eine Lösung (Zur 1. Aufgabe) die so aussieht:

lim      = 2x+h+4 -  4/h
(h->0)

Unsere Lehrerin hat uns ein Lösungsblatt gegeben, jedoch ohne die Rechenschritten (was ich am wichtigsten finde! ;-)). Kann mir das vielleicht jemand erklären?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Probleme mit H-Methode: zur ersten Aufgabe
Status: (Antwort) fertig Status 
Datum: 14:42 So 07.05.2006
Autor: Loddar

Hallo Francis,

[willkommenmr] !!


Wenn Du die Steigung an einem bestimmten Punkt ermitteln möchtest, darfst Du kein $x_$ mehr in dieser Formel haben.


Ich zeige Dir das mal an Deiner ersten Aufgabe. Die zweite machst Du dann selber, okay?

$f'(1) \ := \ [mm] \limes_{h\rightarrow 0}\bruch{f(1+h)-f(1)}{h}$ [/mm]

$= \ [mm] \limes_{h\rightarrow 0}\bruch{(1+h-2)^2-6-[(1-2)^2-6]}{h}$ [/mm]

$= \ [mm] \limes_{h\rightarrow 0}\bruch{(h-1)^2-6-(-5)}{h}$ [/mm]

$= \ [mm] \limes_{h\rightarrow 0}\bruch{(h-1)^2-1}{h}$ [/mm]

$= \ [mm] \limes_{h\rightarrow 0}\bruch{h^2-2h+1-1}{h}$ [/mm]

$= \ [mm] \limes_{h\rightarrow 0}\bruch{h^2-2h}{h}$ [/mm]

$= \ [mm] \limes_{h\rightarrow 0}\bruch{h*(h-2)}{h}$ [/mm]

$= \ [mm] \limes_{h\rightarrow 0}(h-2) [/mm] \ = \ -2$



Bei der 2. Aufgabe lautet das Ergebnis dann $f'(3) \ = \ 4$ .


Gruß
Loddar


Bezug
                
Bezug
Probleme mit H-Methode: Ich habs verstanden!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:21 So 07.05.2006
Autor: Francis553

@Loddar:

vielen Dank für diese ausführliche Erklärung! Sie hat mir sehr weitergeholfen! Bei der zweiten hab ich auch f'(x)=4 !

MfG Francis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de