www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Probleme mit komplexen Zahlen
Probleme mit komplexen Zahlen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Probleme mit komplexen Zahlen : de moivre
Status: (Frage) beantwortet Status 
Datum: 23:31 So 10.07.2005
Autor: asuka

Hallo zusammen!

Kann mir jemand helfen das Brett da vor meinem Kopf wegzubekommen??

Ich soll von Z³=-2+2i alle Lösungen bestimmen die im ersten Quadranten liegen.

Ich hab den Betrag berrechnet und komm da auf [mm]\wurzel{8}[/mm]

Für den Winkel [mm]\Phi [/mm] bekomm ich [mm]\bruch{3}{4}\pi[/mm]

Soweit so gut. Jetzt muß ich das ganz ja eigetnlich nur noch in die Formel:

[mm][mm] Z_{k} [/mm] = [mm] r^\bruch{1}{n}(cos (\bruch{\Phi + 2k\pi}{n}) [/mm] + i sin [mm] (\bruch{\Phi + 2k\pi}{n})) [/mm] einsetzten.

r=  [mm]\wurzel{8}[/mm]
[mm]\Phi [/mm]= [mm]\bruch{3}{4}\pi[/mm]
k= (0,1,2)

aber wo bekomme ich n her???  Bin ich bis hier überhaupt auf dem richtigen weg oder ist das alles Käse??

Ich hoffe mir kann da wer helfen.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.htwm.de/mathe/forum/viewtopic.php?p=903

Mfg hattu

        
Bezug
Probleme mit komplexen Zahlen : n=3 wegen z³
Status: (Antwort) fertig Status 
Datum: 23:49 So 10.07.2005
Autor: Loddar

Hallo asuka,

[willkommenmr]  !


> Ich soll von Z³=-2+2i alle Lösungen bestimmen die im ersten
> Quadranten liegen.
>
> Ich hab den Betrag berrechnet und komm da auf [mm]\wurzel{8}[/mm]

[ok]

  

> Für den Winkel [mm]\Phi[/mm] bekomm ich [mm]\bruch{3}{4}\pi[/mm]

[ok]


> Soweit so gut. Jetzt muß ich das ganz ja eigetnlich nur
> noch in die Formel:
>
> [mm][mm]Z_{k}[/mm] = [mm]r^\bruch{1}{n}(cos (\bruch{\Phi + 2k\pi}{n})[/mm] + i sin [mm](\bruch{\Phi + 2k\pi}{n}))[/mm] einsetzten.

> r=  [mm]\wurzel{8}[/mm]
> [mm]\Phi [/mm]= [mm]\bruch{3}{4}\pi[/mm]
> k= (0,1,2)

[ok]


> aber wo bekomme ich n her???

Da Du ja berechnen sollst [mm] $z^{\red{3}}$, [/mm] ist $n \ = \ [mm] \red{3}$ [/mm] .


Und, [lichtaufgegangen] sowie das Brett weg?

Gruß
Loddar


Bezug
                
Bezug
Probleme mit komplexen Zahlen : Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:15 Mo 11.07.2005
Autor: asuka

Autsch...da hätte ich ja wohl einfach nur mal besser nachdenken sollen...

Danke vielmals das Brett ist jetzt weg! :)

Lg Asuka

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de