www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Produkt- und Kettenregel
Produkt- und Kettenregel < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Produkt- und Kettenregel: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:47 Sa 22.09.2007
Autor: Meister1412

Aufgabe
Bilde die 1. Ableitung !

(1) f(x) = (3x³ - [mm] 5x)^4 [/mm]

(2) f(x) = (4x + 8 ) * (5x² + 2x)²

(3) f(x) = [mm] \wurzel[3]{4x² + 5x} [/mm]

(4) f(x) = (5x - 3) : (4x² + 6x)

Hallo !

Ich würde gerne wissen, ob meine Ergebnisse richtig sind !
Man könnte sie zwar noch zusammenfassen, aber darauf kommt es hierbei nicht an.

Lösungen:

(1) f'(x) = 4(3x³ - 5x)³ * (9x² - 5)

(2) f'(x) = 4(5x² + 2x)² + 2(5x²+2x) * (10x + 2) * (4x + 8)

(3) f'(x) = 1/3 (4x² + [mm] 5x)^{-2/3} [/mm] * (8x + 5)

(4) f'(x) = 5(4x² + [mm] 6x)^{-1} [/mm] + (5x-3) * (-(4x² + [mm] 6x)^{-2}) [/mm] *(8x + 6)

Ich wäre für eure Hilfe sehr dankbar !  :-)

        
Bezug
Produkt- und Kettenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 Sa 22.09.2007
Autor: Bastiane

Hallo Meister1412!

> Bilde die 1. Ableitung !
>  
> (1) f(x) = (3x³ - [mm]5x)^4[/mm]
>  
> (2) f(x) = (4x + 8 ) * (5x² + 2x)²
>  
> (3) f(x) = [mm]\wurzel[3]{4x² + 5x}[/mm]
>  
> (4) f(x) = (5x - 3) : (4x² + 6x)
>
> Hallo !
>  
> Ich würde gerne wissen, ob meine Ergebnisse richtig sind !
>  Man könnte sie zwar noch zusammenfassen, aber darauf kommt
> es hierbei nicht an.
>  
> Lösungen:
>  
> (1) f'(x) = 4(3x³ - 5x)³ * (9x² - 5)

Äußere Ableitung mal innere Ableitung - genau richtig. [daumenhoch]
  

> (2) f'(x) = 4(5x² + 2x)² + 2(5x²+2x) * (10x + 2) * (4x +
> 8)

Kettenregel - genau. [daumenhoch]
  

> (3) f'(x) = 1/3 (4x² + [mm]5x)^{-2/3}[/mm] * (8x + 5)

Sehr gut. [daumenhoch]
  

> (4) f'(x) = 5(4x² + [mm]6x)^{-1}[/mm] + (5x-3) * (-(4x² + [mm]6x)^{-2})[/mm]
> *(8x + 6)

Das verstehe ich gerade nicht. Ich habe da als erstes etwas anderes raus. Das Ganze ist doch ein Bruch: [mm] \frac{5x-3}{4x^2+6x}. [/mm] Das kannst du doch mit der MBQuotientenregel ableiten. [kopfkratz]

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Produkt- und Kettenregel: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 17:35 Sa 22.09.2007
Autor: Blech


> > (4) f'(x) = 5(4x² + [mm]6x)^{-1}[/mm] + (5x-3) * (-(4x² + [mm]6x)^{-2})[/mm]
> > *(8x + 6)
>  
> Das verstehe ich gerade nicht. Ich habe da als erstes etwas
> anderes raus.

Die Lösung stimmt aber.

[mm]f(x)= \frac{5x-3}{4x^2 + 6x} = (5x-3)(4x^2 + 6x)^{-1} = u(x)v(x)[/mm]
Dann mit Produktregel und Kettenregel für die zweite Klammer.

> Das Ganze ist doch ein Bruch:
> [mm]\frac{5x-3}{4x^2+6x}.[/mm] Das kannst du doch mit der
> MBQuotientenregel ableiten. [kopfkratz]

Muß man aber nicht, bzw. die Quotientenregel kann man gerade mit der Methode von oben herleiten. =)


Bezug
                
Bezug
Produkt- und Kettenregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:04 Sa 22.09.2007
Autor: Bastiane

Hallo Blech!

Du hast natürlich recht, was die letzte Aufgabe angeht. Mich hatte es verwirrt, dass da direkt etwas mit "hoch -1" stand - aber das ist ja ein Teil des Nenners und zwar der richtige. :-) Allerdings finde ich die Quotientenregel in diesem Fall einfacher (vllt auch nur, weil ich's gewöhnt bin. ;-))

Viele Grüße
Bastiane
[cap]

Bezug
                        
Bezug
Produkt- und Kettenregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:19 Sa 22.09.2007
Autor: Meister1412

Nun das wird daran liegen, dass wir die Quotientenregel noch nicht gelernt habe :-)

Bezug
                                
Bezug
Produkt- und Kettenregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:27 Sa 22.09.2007
Autor: Bastiane

Hallo Meister1412!

> Nun das wird daran liegen, dass wir die Quotientenregel
> noch nicht gelernt habe :-)

Ach so, sag das doch gleich. ;-)

Viele Grüße
Bastiane
[cap]

Bezug
                                
Bezug
Produkt- und Kettenregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:36 Sa 22.09.2007
Autor: Blech


> Nun das wird daran liegen, dass wir die Quotientenregel
> noch nicht gelernt habe :-)

Du hast sie gerade effektiv hergeleitet =)

[mm]\frac{d}{dx}\frac{u}{v}=\frac{d}{dx}(uv^{-1})=u'v^{-1}-uv^{-2}v' =\frac{u'}{v}-\frac{uv'}{v^2} = \frac{u'v-uv'}{v^2}[/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de