www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Produkt von rat. Z.=rat.Z.
Produkt von rat. Z.=rat.Z. < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Produkt von rat. Z.=rat.Z.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:28 Sa 20.02.2016
Autor: sinnlos123

Ich möchte folgendes zeigen:
[mm] a,b\in \IQ \Rightarrow a*b=z\in \IQ [/mm]

[mm] a=\bruch{f}{g} [/mm] mit [mm] f,g\in \IZ \wedge g\not=0 [/mm]

[mm] b=\bruch{k}{m} [/mm] mit [mm] k,m\in \IZ \wedge m\not=0 [/mm]

[mm] z=\bruch{f*k}{g*m} [/mm]

[mm] d=f*k=\summe_{i=1}^{k}f \Rightarrow d\in \IZ [/mm]

[mm] e=g*m=\summe_{i=1}^{m}g \Rightarrow e\in \IZ [/mm]

[mm] z=\bruch{d}{e} \Rightarrow z\in \IQ [/mm]

Ok so?

        
Bezug
Produkt von rat. Z.=rat.Z.: Einfacher
Status: (Antwort) fertig Status 
Datum: 23:03 Sa 20.02.2016
Autor: HJKweseleit


> Ich möchte folgendes zeigen:
>  [mm]a,b\in \IQ \Rightarrow a*b=z\in \IQ[/mm]
>  
> [mm]a=\bruch{f}{g}[/mm] mit [mm]f,g\in \IZ \wedge g\not=0[/mm]
>  
> [mm]b=\bruch{k}{m}[/mm] mit [mm]k,m\in \IZ \wedge m\not=0[/mm]
>  
> [mm]z=\bruch{f*k}{g*m}[/mm]

[ok]

Jetzt nur noch: z [mm] \in \IQ, [/mm] da f*k [mm] \in \IZ, [/mm] g*m [mm] \in \IZ [/mm] und g*m [mm] \ne [/mm] 0, da [mm] g\ne [/mm] 0 und m [mm] \ne [/mm] 0.

--------------------- fertig --------------------

>  
> [mm]d=f*k=\summe_{i=1}^{k}f \Rightarrow d\in \IZ[/mm]

Was soll das für eine komische Summe sein?

>  
> [mm]e=g*m=\summe_{i=1}^{m}g \Rightarrow e\in \IZ[/mm]

dito

>  
> [mm]z=\bruch{d}{e} \Rightarrow z\in \IQ[/mm]
>  
> Ok so?


Bezug
                
Bezug
Produkt von rat. Z.=rat.Z.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:11 Sa 20.02.2016
Autor: sinnlos123

Hi,

ich wollte damit ausdrücken, dass
f*k ist f+f+f+... halt k mal(es ist also eine Summe von ganzen Zahlen), oder muss ich garnicht mehr das Produkt zweier ganzer Zahlen als ganze Zahl zeigen?

Bei deinem letzten Schritt muss ich also nur noch die Definition von [mm] \IQ [/mm] bei z überprüfen/zeigen?
Die ja wäre: z lässt sich als Bruch zweier ganzer Zahlen dastellen und der Zähler ist nicht 0 -> z [mm] \in \IQ [/mm]

Bezug
                        
Bezug
Produkt von rat. Z.=rat.Z.: Antwort
Status: (Antwort) fertig Status 
Datum: 23:21 Sa 20.02.2016
Autor: M.Rex

Hallo

> Hi,

>

> ich wollte damit ausdrücken, dass
> f*k ist f+f+f+... halt k mal(es ist also eine Summe von
> ganzen Zahlen), oder muss ich garnicht mehr das Produkt
> zweier ganzer Zahlen als ganze Zahl zeigen?

>

> Bei deinem letzten Schritt muss ich also nur noch die
> Definition von [mm]\IQ[/mm] bei z überprüfen/zeigen?
> Die ja wäre: z lässt sich als Bruch zweier ganzer Zahlen
> dastellen und der Zähler ist nicht 0 -> z [mm]\in \IQ[/mm]

Das ist ok, aber du musst nicht den Umweg über die Summe gehen.

Marius

Bezug
        
Bezug
Produkt von rat. Z.=rat.Z.: Antwort
Status: (Antwort) fertig Status 
Datum: 23:14 Sa 20.02.2016
Autor: M.Rex

Hallo

Wenn du schon mit den Summen arbeitest, dann besser wie folgt:

[mm] z=\frac{f\cdot k}{g\cdot m}=\frac{\overbrace{f+\ldots+f}^{\text{k-mal}}}{\underbrace{g+\ldots+g}_{\text{m-mal}}} [/mm]

Aber nötig sind sie nicht, da die Multiplikationen von ganzen Zahlen sowohl im Zähler als auch im Nenner wieder jeweils eine ganze Zahl ergeben.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de