www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Produktregel oder nicht?
Produktregel oder nicht? < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Produktregel oder nicht?: partielle Integration, Produkt
Status: (Frage) beantwortet Status 
Datum: 11:37 Fr 21.01.2011
Autor: zzyzx

Aufgabe
Berechnen Sie die folgenden Integrale und geben Sie jeweils die benutzten Integrationsregeln an:
[mm] \integral_{a}^{b}{x^2*sin(x) dx}, [/mm]
[mm] \integral_{0}^{\wurzel{\bruch{\pi}{2}}}{x*cos(x^2) dx} [/mm]

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.onlinemathe.de/forum/Produktregel-234

Moin Leute,
wir hatten in der Vorlesung auch ein Beispiel zur partiellen Integration, dabei kam aber ein sehr viel einfacheres Ergebnis bei raus.
Wenn ich die Produktregel bei der ersten Aufgabe anwende, komme ich auf folgendes:

[mm] \integral_{a}^{b}{x^2*sin(x) dx}= [x^2*cos(x)]_{a}^{b} [/mm] - [mm] \integral_{a}^{b}{2x*cos(x) dx} [/mm]

das hilft mir aber absolut nicht weiter. Hab ich was falsch gemacht, oder seh ich die Lösung einfach nur nicht?

danke im voraus

        
Bezug
Produktregel oder nicht?: Antwort
Status: (Antwort) fertig Status 
Datum: 11:45 Fr 21.01.2011
Autor: schachuzipus

Hallo zzyzzx und [willkommenmr],

> Berechnen Sie die folgenden Integrale und geben Sie jeweils
> die benutzten Integrationsregeln an:
> [mm]\integral_{a}^{b}{x^2*sin(x) dx},[/mm]
>
> [mm]\integral_{0}^{\wurzel{\bruch{\pi}{2}}}{x*cos(x^2) dx}[/mm]
> Ich
> habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
> http://www.onlinemathe.de/forum/Produktregel-234
>
> Moin Leute,
> wir hatten in der Vorlesung auch ein Beispiel zur
> partiellen Integration, dabei kam aber ein sehr viel
> einfacheres Ergebnis bei raus.
> Wenn ich die Produktregel bei der ersten Aufgabe anwende,
> komme ich auf folgendes:
>
> [mm]\integral_{a}^{b}{x^2*sin(x) dx}= [x^2*cos(x)]_{a}^{b}[/mm] - [mm]\integral_{a}^{b}{2x*cos(x) dx}[/mm]

Da ist ein VZF!

Es ist doch [mm]-\cos(x)[/mm] eine Stfk. zu [mm]\sin(x)[/mm]

Also (ohne Grenzen geschrieben):

[mm]\int\limits{x^2\cdot{}\sin(x) \ dx}=x^2\cdot{}(-\cos(x)) \ - \ \int\limits{2x(-\cos(x)) \ dx}[/mm]

[mm]=-x^2\cos(x)+2\int{x\cos(x) \ dx}[/mm]

Nun nochmal partielle Integration bemühen für das verbleibende Integral!


Für das andere Integral substituiere [mm]z=z(x):=x^2[/mm]


>
> das hilft mir aber absolut nicht weiter. Hab ich was falsch
> gemacht, oder seh ich die Lösung einfach nur nicht?
>
> danke im voraus

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de