www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Projektion auf U
Projektion auf U < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Projektion auf U: Aufgabe 1+2
Status: (Frage) beantwortet Status 
Datum: 20:16 Di 03.07.2007
Autor: kleine_ente_nora

Aufgabe
1) Eine Projektion eines endlich-dimensionalen K-Vektorraumes V ist ein Endomorphismus [mm] p:V\toV [/mm] mit [mm] p^{2}=p. [/mm] Zeigen Sie, dass es zu jedem Unterraum [mm] U\subsetV [/mm] eine Projektion [mm] p:V\toV [/mm] mit p(V)=U gibt (man nennt p dann eine Projektion von U).
2) Zeigen Sie, dass eine Projektion diagonalisierbar ist, also eine Basis aus Eigenvektoren besitzt. Was sind die Eigenwerte?

Das wichtige ist der erste teil der aufgabe. ich weiß im moment überhaupt nicht, wie man zeigen soll, dass es eine abbildung gibt. ich meine wenn ich diese wählen kann, dann ist es doch klar, dass es eine gibt, oder? und zu zweitens: ich habe eigenwerte und eigenvektoren in der vorlesung nicht verstanden, vielleicht kann mir das also nochmal jemand erklären, am besten an dem beispiel. dank euch jetzt schon.

        
Bezug
Projektion auf U: Antwort
Status: (Antwort) fertig Status 
Datum: 13:49 Mi 04.07.2007
Autor: angela.h.b.


> 1) Eine Projektion eines endlich-dimensionalen
> K-Vektorraumes V ist ein Endomorphismus [mm]p:V\toV[/mm] mit
> [mm]p^{2}=p.[/mm] Zeigen Sie, dass es zu jedem Unterraum [mm]U\subsetV[/mm]
> eine Projektion [mm]p:V\toV[/mm] mit p(V)=U gibt (man nennt p dann
> eine Projektion von U).
>  2) Zeigen Sie, dass eine Projektion diagonalisierbar ist,
> also eine Basis aus Eigenvektoren besitzt. Was sind die
> Eigenwerte?
>  Das wichtige ist der erste teil der aufgabe. ich weiß im
> moment überhaupt nicht, wie man zeigen soll, dass es eine
> abbildung gibt. ich meine wenn ich diese wählen kann, dann
> ist es doch klar, dass es eine gibt, oder?

Hallo,

richtig - bloß um sie wählen zu können, muß es sie geben...

Nimm Deinen VR V und einen Unterraum U. Dieser hat eine Basis [mm] (b_1,...,b_m), [/mm] welche Du durch [mm] (b_{m+1},...,b_n) [/mm] zu einer Basis von V ergänzen kannst. (Woher weiß man das?).

Dann ist [mm] V= \oplus . [/mm]

So. Nun definiere ein Abbildung, welche [mm] b_1,...,b_m [/mm] jeweils auf sich selbst abbildet und [mm] b_{m+1},...,b_n [/mm] jeweils auf den Nullvektor.

Zeige dann, daß sie die geforderte Eigenschaft hat.


und zu zweitens:

> ich habe eigenwerte und eigenvektoren in der vorlesung
> nicht verstanden,

Ein Eigenvektor ist ein von Null verschiedener Vektor, welcher sich durch die Abbildung nur um einen (skalaren) Faktor ändert.

Hast Du eine Matrix M und einen Vektor [mm] v\not=0, [/mm] welcher abgebildet wird auf
[mm] Mv=\alpha [/mm] v, so ist [mm] \alpha [/mm] ein Eigenwert der Matrix und v ein zum Eigenwert  [mm] \alpha [/mm] gehöriger Eigenvektor.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de