Projektiver Raum < Algebraische Geometrie < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:09 Mi 08.06.2011 | Autor: | Lippel |
Aufgabe | Sei k algebraisch abgeschlossener Körper. Wir definieren:
[mm] $\IP^n [/mm] = [mm] \{(x_0,\ldots,x_n) \in k^{n+1}\;|\; \exists i \in \{0, \ldots, n\}: x_i \not=0\}/ \sim$, [/mm] wobei [mm] $(x_0,\ldots,x_n) \sim (\lambda x_0,\ldots, \lambda x_n)$ [/mm] für [mm] $\lambda \in k^{\times}$.
[/mm]
$f [mm] \in k[X_0, \ldots, X_n]$ [/mm] heißt homogen, falls alle Monome, aus denen f besteht, den gleichen Grad haben. $I [mm] \trianglelefteq k[X_0, \ldots, X_n]$ [/mm] heißt homogen, falls I sich durch homogene Polynome erzeugen lässt.
Zeigen Sie:
(a) Für $I [mm] \trianglelefteq k[X_0, \ldots, X_n]$ [/mm] homogen ist
[mm] $V_{pr} [/mm] (I):= [mm] \{ \overline{(x_0,\ldots,x_n)} \in \IP^n \;|\; f(x_0,\ldots,x_n) = 0 \;\forall\; f \in I\}$
[/mm]
wohldefiniert.
Ist $V [mm] \subseteq \IP^n$, [/mm] dann ist
[mm] $\mathcal{I}_{pr} [/mm] (V) = [mm] \{ f \in k[X_0, \ldots, X_n] \;\textrm{homogen} \;|\; f(x_0,\ldots,x_n) = \;\forall\; \overline{(x_0,\ldots,x_n)} \in V\}$
[/mm]
ein wohldefiniertes homogenes Ideal.
Es gilt [mm] $\mathcal{I}_{pr}(V_{pr}(I)) \subseteq [/mm] I$. |
Hallo,
ich habe einige Schwierigkeiten mit dieser Aufgabe.
Es war kein Problem zu zeigen, dass [mm] $V_{pr}(I)$ [/mm] wohldefiniert ist.
Aber ich vermute eine Fehler in der Aufgabenstellung bei der Definition von [mm] $\mathcal{I}_{pr}(V)$. [/mm] Denn ist $f [mm] \in \mathcal{I}_{pr}(V)$ [/mm] nicht das Nullpolynom, dann ist [mm] $X_{0}f [/mm] +f$ nicht homogen und somit [mm] $\mathcal{I}_{pr}(V)$ [/mm] kein Ideal. Stimmt das?
Wenn ich das "homogen" in der Defintion weglasse, kann ich hingegen alle Eigenschaften zeigen.
Nun zu [mm] $\mathcal{I}_{pr}(V_{pr}(I)) \subseteq [/mm] I$.
Ich sehe nicht, dass dies gilt, wenn I nicht reduziert ist. Warum bekommt man hier nicht die gleichen Schwierigkeiten wie im ganz normalen affinen Raum, wo diese Inklusion nur für reduzierte Ideale gilt?
Nehme ich zum Beispiel $k = [mm] \IC$ [/mm] und das homogene Polynom [mm] $X^2+2XY+Y^2 \in \IC[X,Y]$ [/mm] und $I$ sei das von diesem Polynom erzeugte Ideal. Dann ist doch wegen [mm] $X^2+2XY+Y^2 [/mm] = [mm] (X+Y)^2$ [/mm] die projektive algebraische Menge [mm] $V_{pr}(I) [/mm] = [mm] \{ (x,y) \in \IP^1 \;|\; x = -y\}$ [/mm] und damit [mm] $\mathcal{I}_{pr}(V_{pr}(I)) [/mm] = (X+Y) [mm] \not\subseteq (X^2+2XY+Y^2)$.
[/mm]
Wo ist hier mein Denkfehler?
LG Lippel
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:56 Mi 08.06.2011 | Autor: | Berieux |
Hi!
> Sei k algebraisch abgeschlossener Körper. Wir definieren:
> [mm]\IP^n = \{(x_0,\ldots,x_n) \in k^{n+1}\;|\; \exists i \in \{0, \ldots, n\}: x_i \not=0\}/ \sim[/mm],
> wobei [mm](x_0,\ldots,x_n) \sim (\lambda x_0,\ldots, \lambda x_n)[/mm]
> für [mm]\lambda \in k^{\times}[/mm].
>
> [mm]f \in k[X_0, \ldots, X_n][/mm] heißt homogen, falls alle
> Monome, aus denen f besteht, den gleichen Grad haben. [mm]I \trianglelefteq k[X_0, \ldots, X_n][/mm]
> heißt homogen, falls I sich durch homogene Polynome
> erzeugen lässt.
>
> Zeigen Sie:
>
> (a) Für [mm]I \trianglelefteq k[X_0, \ldots, X_n][/mm] homogen
> ist
> [mm]V_{pr} (I):= \{ \overline{(x_0,\ldots,x_n)} \in \IP^n \;|\; f(x_0,\ldots,x_n) = 0 \;\forall\; f \in I\}[/mm]
>
> wohldefiniert.
>
> Ist [mm]V \subseteq \IP^n[/mm], dann ist
> [mm]\mathcal{I}_{pr} (V) = \{ f \in k[X_0, \ldots, X_n] \;\textrm{homogen} \;|\; f(x_0,\ldots,x_n) = \;\forall\; \overline{(x_0,\ldots,x_n)} \in V\}[/mm]
>
> ein wohldefiniertes homogenes Ideal.
>
> Es gilt [mm]\mathcal{I}_{pr}(V_{pr}(I)) \subseteq I[/mm].
>
>
> Hallo,
>
> ich habe einige Schwierigkeiten mit dieser Aufgabe.
> Es war kein Problem zu zeigen, dass [mm]V_{pr}(I)[/mm]
> wohldefiniert ist.
>
> Aber ich vermute eine Fehler in der Aufgabenstellung bei
> der Definition von [mm]\mathcal{I}_{pr}(V)[/mm]. Denn ist [mm]f \in \mathcal{I}_{pr}(V)[/mm]
> nicht das Nullpolynom, dann ist [mm]X_{0}f +f[/mm] nicht homogen und
> somit [mm]\mathcal{I}_{pr}(V)[/mm] kein Ideal. Stimmt das?
> Wenn ich das "homogen" in der Defintion weglasse, kann ich
> hingegen alle Eigenschaften zeigen.
Jop. Du hast völlig recht man muss homogen in der Def. rauslassen. Das Ideal wird bloß von homogenen Polynomen erzeugt.
>
> Nun zu [mm]\mathcal{I}_{pr}(V_{pr}(I)) \subseteq I[/mm].
> Ich sehe
> nicht, dass dies gilt, wenn I nicht reduziert ist. Warum
> bekommt man hier nicht die gleichen Schwierigkeiten wie im
> ganz normalen affinen Raum, wo diese Inklusion nur für
> reduzierte Ideale gilt?
>
> Nehme ich zum Beispiel [mm]k = \IC[/mm] und das homogene Polynom
> [mm]X^2+2XY+Y^2 \in \IC[X,Y][/mm] und [mm]I[/mm] sei das von diesem Polynom
> erzeugte Ideal. Dann ist doch wegen [mm]X^2+2XY+Y^2 = (X+Y)^2[/mm]
> die projektive algebraische Menge [mm]V_{pr}(I) = \{ (x,y) \in \IP^1 \;|\; x = -y\}[/mm]
> und damit [mm]\mathcal{I}_{pr}(V_{pr}(I)) = (X+Y) \not\subseteq (X^2+2XY+Y^2)[/mm].
>
> Wo ist hier mein Denkfehler?
Auch hier ist kein Denkfehler von dir. Vermutlich ist das ein Tippfehler und ihr sollt die umgekehrte Inklusion zeigen.
Es gilt hier nämlich auch allgemein, sofern [mm]V_{pr}(I) [/mm] nicht leer ist:
[mm] I_{pr}(V_{pr}(I))=\sqrt{I} [/mm] (projektiver Nullstellensatz)
>
> LG Lippel
Beste Grüße,
Berieux
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:11 Mi 08.06.2011 | Autor: | Lippel |
Vielen Dank! War halb am Verzweifeln.
Grüße, Lippel
|
|
|
|