www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Proof
Proof < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Proof: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:25 Mo 07.06.2004
Autor: phymastudi

Hi. Wärt ihr so nett und überprüft meine Lösungen zu folgender Aufgabe?!. Vielen Dank!

Wie oft muss man mit einem fairen Würfel mindestens würfeln, um

a) mit W' von 90 Prozent mindestens eine Eins zu erzielen?
b) mit W' von 30 Prozent mindestens zwei Fünfen zu erzielen?

zu a): Es gilt ja:  1-q größer= (1-p)n

q= 0,9 und p=1/6

also:   0,1 größer= (5/6)n

genau darus folgt: n größer= log 0,1/ log (5/6) = 12,65
"             "       "  : n größer= 13

zu b) q=0,3 und p= 1/36(mindestens)

n größer= log 0,7/ log (35/36) = 13

einverstanden???

Lg

        
Bezug
Proof: Antwort
Status: (Antwort) fertig Status 
Datum: 00:51 Di 08.06.2004
Autor: Stefan

Lieber Björn!

> Hi. Wärt ihr so nett und überprüft meine Lösungen zu
> folgender Aufgabe?!. Vielen Dank!

Klar, kein Problem. :-)

> Wie oft muss man mit einem fairen Würfel mindestens
> würfeln, um
>  
> a) mit W' von 90 Prozent mindestens eine Eins zu
> erzielen?
>  b) mit W' von 30 Prozent mindestens zwei Fünfen zu
> erzielen?
>  
> zu a): Es gilt ja:  1-q größer= (1-p)n
>  
> q= 0,9 und p=1/6
>  
> also:   0,1 größer= (5/6)nEingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  
> genau darus folgt: n größer= log 0,1/ log (5/6) = 12,65
>   "             "       "  : n größer= 13

[ok]

> zu b) q=0,3 und p= 1/36(mindestens)

Wie kommst du auf $p=\frac{1}{36}$ ?

Die Wahrscheinlichkeit in $n$ Würfen weniger als $2$ Fünfen zu erzielen, ist ja gleich der Wahrscheinlichkeit $0$ Fünfer zu erzielen plus der Wahrscheinlichkeit $1$ Fünfer zu erzielen, also:

$\left(\frac{5}{6})^n + n (\frac{5}{6})^{n-1} \cdot \frac{1}{6}$.

Die Wahrscheinlichkeit des Gegenereignisses soll mindestens gleich $0,3$ sein, d.h. es soll

$1-  \left(\frac{5}{6})^n - n (\frac{5}{6})^{n-1} \cdot \frac{1}{6} \ge 0,3$

gelten.

Bis hierhin alles klar?

Hast du eine Idee, wie man weitermachen könnte (außer mit Ausprobieren, was ja auch nicht verboten ist)?

(Ich nämlich gerade nicht. [keineahnung])

Liebe Grüße
Stefan


Bezug
                
Bezug
Proof: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:45 Di 08.06.2004
Autor: phymastudi

wie kommt man denn auf [mm] \left(\frac{5}{6})^n + n (\frac{5}{6})^{n-1} \cdot \frac{1}{6} [/mm]???
LG

Bezug
                        
Bezug
Proof: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 Di 08.06.2004
Autor: Stefan

Hallo Björn!

> wie kommt man denn auf [mm]\left(\frac{5}{6})^n + n (\frac{5}{6})^{n-1} \cdot \frac{1}{6} [/mm]???

Naja, die Anzahl $X$ der $5$en bei einem $n$-fachen Würfelexperiment ist ja

[mm] $B(n,\frac{1}{6})$-verteilt, [/mm] d.h. Binomial-verteilt mir Parametern $n$ und [mm] $p=\frac{1}{6}$. [/mm]

Daher gilt:

$P(X=k) = {n [mm] \choose [/mm] k} [mm] \left(\frac{1}{6}\right)^k \cdot \left(\frac{5}{6}\right)^{n-k}$. [/mm]

Wir hatten:

$P(X [mm] \ge [/mm] 2) = 1 - P(X=0) - P(X=1)$.

Nun haben wir nach obiger Formel:

$P(X=0) = {n [mm] \choose [/mm] 0} [mm] \left(\frac{1}{6}\right)^0 \cdot \left(\frac{5}{6}\right)^{n} [/mm] = [mm] \left( \frac{5}{6} \right)^n$ [/mm]

und

$P(X=1) = {n [mm] \choose [/mm] 1} [mm] \left(\frac{1}{6}\right)^1 \cdot \left(\frac{5}{6}\right)^{n-1} [/mm] = n [mm] \cdot \frac{1}{6} \cdot \left(\frac{5}{6}\right)^{n-1}$. [/mm]

So, jetzt bist du an der Reihe. Wie kann man in meiner Ungleichung nach $n$ auflösen? (Ich weiß es selber nicht. Man könnte, wie gesagt, Werte für $n$ einfach einsetzen und schauen, wann die Ungleichung zum ersten Mal erfüllt ist.)

Liebe Grüße
Stefan


Bezug
        
Bezug
Proof: Antwort
Status: (Antwort) fertig Status 
Datum: 21:15 Di 08.06.2004
Autor: Stefan

Hallo Björn,

bei der zweiten Aufgabe habe ich jetzt durch Ausprobieren herausgefunden, dass dies für [mm] $n\ge [/mm] 7$ gilt, d.h. man muss mindestens sieben Mal würfeln.

Liebe Grüße
Stefan

Bezug
                
Bezug
Proof: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:12 Di 08.06.2004
Autor: phymastudi

HI,

das hatte ich auch raus, aber leider nur über die Hälfte deines Ansatzes:

0,3 größer= (1-(1/6))n
n größer= 7

Bezug
                        
Bezug
Proof: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 Di 08.06.2004
Autor: Stefan

Hallo Björn!

Hmmh, da kommt aber echt nur zufällig das Gleiche raus, auch wenn das jetzt unwahrscheinlich klingt. Ist aber so, den Ansatz kann ich jedenfalls nicht nachvollziehen.

Ich lasse es mal teilbeantwortet, vielleicht schauen ja Oliver oder Marc mal drüber (die beide online sind, daher spreche ich sie an).

Liebe Grüße
Stefan

Bezug
                        
Bezug
Proof: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:06 Mi 09.06.2004
Autor: Stefan

Hallo Björn!

Da sich leider keiner mehr gemeldet und das Ergebnis kontrolliert hat, sollte es wirklich nur Zufall gewesen sein, dass du das Gleiche rausbekommen hast. Übernehme einfach meinen Lösungsweg. :-)

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de