Proportionalitätsfaktor < Klassen 8-10 < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:52 Do 24.01.2013 | Autor: | Lalalong |
Aufgabe | Was gibt der Propotionalitätsfaktor an? |
Hallo.
Eine sinnvollere Überschrift wurde leider nicht angenommen.
Ich scheiter an dieser genannten Aufgabe.
Ich weiß, wie man den Propotionalitätsfaktor bestimmt:
Ausgangsgröße:= B
Zugeordnete Größe := C
Propotionalitätsfaktor := P
[mm] \bruch{B}{C} [/mm] = P
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:05 Do 24.01.2013 | Autor: | Lalalong |
Müsste ich es nicht eigentlich:
[mm] \bruch{x}{y} [/mm] = p
nennen?
|
|
|
|
|
Also wenn du eine eindeutige Zuordnung hast, kannst du sie als Funktion auffassen und dann ist der Prop'faktor die Steigung deiner Geraden, sprich das Verhältnis zwischen einer Stelle x und dem passenden Funktionswert y
[mm]\bruch{y}{x}[/mm] = p
EDIT: Deine Formel hatte einen kleinen Fehler und zwar ist der Prop'faktor der Quotient aus der zugeordneten Größe $y$ und der Ausgangsgröße $x$ und nicht andersherum.
|
|
|
|
|
Hallo Lalalong,
> Was gibt der Propotionalitätsfaktor an?
> Eine sinnvollere Überschrift wurde leider nicht
> angenommen.
> Ich scheiter an dieser genannten Aufgabe.
Um deine Frage richtig zu verstehen, du möchtest wissen was der Proportionalitätsfaktor einer Zuordnung angibt? Naja der Proportionalitätsfaktor wird dazu gebraucht um von einer Ausgangsgröße die zugeordnete Größe zu bestimmen.
Nehmen wir mal an du hast eine Zuordnung mit folgender Darstellung (Ausgangsgröße [mm] $\mapsto$ [/mm] zugeordnete Größe):
$2 [mm] \mapsto [/mm] 6, 3 [mm] \mapsto 9,\dots, [/mm] 12 [mm] \mapsto [/mm] 36$ und du siehst mit deiner Formel, dass der Proportionalitätsfaktor $3$ ist, denn jede Ausgangsgröße multipliziert mit dem Faktor ergibt die passende zugeordnete Größe.
> Ich weiß, wie man den Propotionalitätsfaktor bestimmt:
>
> Ausgangsgröße:= B
> Zugeordnete Größe := C
> Propotionalitätsfaktor := P
>
> [mm]\bruch{B}{C}[/mm] = P
>
Deine Formel sagt es bereits - jedoch musst du noch die Position von Ausgangsgröße und zugeordneter Größe tauschen. Du musst dir halt die (triviale) Frage stellen, wie du von deiner Ausgangsgröße zu deiner unbekannten zugeordneten Größe kommst wenn du nur als weitere Information den Prop.faktor hast.
Grüße
Joe
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:14 Do 24.01.2013 | Autor: | Lalalong |
Habe ich dich richtig Verstanden:
Sind mir die Ausgangsgrößen bekannt jedoch die zugeordnete Größe nicht, kann ich durch den Propotionalitätsfaktor die zugeordnete Größe bestimmen.
Dies kann ich auch anwenden, wenn mir die zugeordnete Größe bekannt ist, aber die Ausgangsgröße nicht. (Das ist aber sehr unwahrscheinlich. )
|
|
|
|
|
> Habe ich dich richtig Verstanden:
> Sind mir die Ausgangsgrößen bekannt jedoch die
> zugeordnete Größe nicht, kann ich durch den
> Propotionalitätsfaktor die zugeordnete Größe bestimmen.
Genau, denn sagen wir mal $x$ ist unsere Ausgangsgröße, $y$ die zugeordnete Größe und $p$ der Proportionalitätsfaktor, so gilt $x [mm] \cdot [/mm] p = y$.
> Dies kann ich auch anwenden, wenn mir die zugeordnete
> Größe bekannt ist, aber die Ausgangsgröße nicht. (Das
> ist aber sehr unwahrscheinlich. )
Doch, das kannst du ebenfalls umdrehen :). Sei immernoch $x$ unsere Ausgangsgröße, $y$ die zugeordnete Größe und $p$ der Proportionalitätsfaktor, so gilt
$x = [mm] \bruch{y}{p}$.
[/mm]
Du stellst also im Grunde nur deine Gleichung nach der passenden Variablen um und kannst so direkt die fehlenden Größen deiner Zuordung/Funktion bestimmen.
Grüße
Joe
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:36 Do 24.01.2013 | Autor: | Lalalong |
x * p = y geht leider nicht auf.
Ich bringe ein Beispiel:
Anzahl der Flaschen Preis in€
7 21,70
8 24,80
9 27,90
P = [mm] \bruch{10}{31}
[/mm]
x := Anzahl
y := Preis
7 = [mm] \bruch{21,70}{0,3225806} [/mm]
(Das geht auf, wenn man rundet. Ich benutze Dezimalbrüche in einem Bruch! Asche auf mein Haupt )
7 * 0,3225806 [mm] \not= [/mm] y
y = [mm] \bruch{7}{0,3225806}
[/mm]
Habe ich mich verrechnet?
Wie soll man den Satz KURZ zu Ende formulieren?
|
|
|
|
|
> x * p = y geht leider nicht auf.
>
> Ich bringe ein Beispiel:
>
> Anzahl der Flaschen Preis in€
> 7 21,70
> 8 24,80
> 9 27,90
>
> P = [mm]\bruch{10}{31}[/mm]
dein P ist schlichtergreifend falsch berechnet, weil ich den Fehler erst zu spät gesehen habe. Der Prop'faktor berechnet sich aus dem Quotienten von zugeordneter Größe und Ausgangsgröße, also unabhängig von gewählten Größen und daher gilt:
$P = [mm] \bruch{21,70}{7} [/mm] = [mm] \bruch{24,80}{8} [/mm] = 3,10$€
> x := Anzahl
> y := Preis
>
> 7 = [mm]\bruch{21,70}{0,3225806}[/mm]
>
> (Das geht auf, wenn man rundet. Ich benutze Dezimalbrüche
> in einem Bruch! Asche auf mein Haupt )
>
> 7 * 0,3225806 [mm]\not=[/mm] y
> y = [mm]\bruch{7}{0,3225806}[/mm]
>
> Habe ich mich verrechnet?
Ja, weil du den Prop'faktor aufgrund meiner Schludrigkeit, für die ich mich entschuldige :), falsch berechnet hast. Der Prop'faktor $P = 3,10$, also gilt beispielsweise: $7 = [mm] \bruch{21,70}{3,10}$, [/mm] bzw. $21,70 = 7 [mm] \cdot [/mm] 3,10$.
>
> Wie soll man den Satz KURZ zu Ende formulieren?
Den Satz zum Prop'faktor? Der Proportionalitätsfaktor $p$ ist eine konstante Größe einer proportionalen Zuordnung um mithilfe der Ausgangsgröße, fehlende zugeordnete Größe zu berechnen ($x [mm] \cdot [/mm] p = y$) oder mithilfe zugeordneter Größen, fehlende Ausgangsgrößen zu berechnen ($x = [mm] \bruch{y}{p}$). [/mm] Wenn man den Graphen (sprich die Gerade) einer proportionalen Zuordnung anschaut beschreibt der Prop'faktor $p$ die Steigung der Geraden.
Du kannst auch alternativ zum ersten Satz schreiben: Der Proportionalitätsfaktor $p$ ist eine konstante Größe einer proportionalen Zuordnung um mithilfe dessen fehlende Größen der Zuordnung zu bestimmen.
Der zweite Satz bleibt :)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:53 Do 24.01.2013 | Autor: | Lalalong |
Danke.
Ich habe das gefunden:
Es sei [mm] \bruch{x}{y} [/mm] = [mm] \bruch{Zugeordnete Größe}{Eingangsgröße} [/mm] := q
dann gilt für die Zuordnungsvorschrift:
y = q * x
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:58 Do 24.01.2013 | Autor: | JoeSunnex |
> Danke.
> Ich habe das gefunden:
>
> Es sei [mm]\bruch{x}{y}[/mm] = [mm]\bruch{Zugeordnete Größe}{Eingangsgröße}[/mm]
> := q
>
> dann gilt für die Zuordnungsvorschrift:
>
> y = q * x
>
Das passt leider nicht :), denn wenn du es so aufschreiben würdest wäre entweder die erste oder die zweite Gleichung falsch. Denn wenn du $x$ als deine zugeordnete Größe benennst (was sehr ungewöhnlich ist, in der Schule ist dies meist $y$). Dann muss unten gelten $x = q [mm] \cdot [/mm] y$. Ansonsten musst du oben $y$ zur zugeordneten Größe machen und $x$ zur Eingangsgröße und den Bruch umkehren - dann passt es.
Also
Es sei [mm]\bruch{y}{x}[/mm] = [mm]\bruch{Zugeordnete Größe}{Eingangsgröße}[/mm] := q
dann gilt für die Zuordnungsvorschrift:
y = q * x
Mach einfach Termumformungen
[mm] $\bruch{y}{x} [/mm] = q$ so kannst du mit x multiplizieren auf beiden Seiten und es folgt$ y = q [mm] \cdot [/mm] x$.
Grüße
Joe
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:09 Do 24.01.2013 | Autor: | Lalalong |
Du hast recht!
So finde ich nur den Quotient heraus.
Mein Fehler war, dass ich Propotionalitätsfaktor mit Quotient aus x und y verwechselt habe.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:38 Do 24.01.2013 | Autor: | Lalalong |
Mir ist aufgefallen, dass der Propotionalitätsfaktor der Kehrwert vom Quotienten aus x und y ist.
Stimmt dies?
|
|
|
|
|
Ja, das stimmt denn der Kehrwert unseres Prop'faktor [mm] $\frac{y}{x}$ [/mm] ist [mm] $\frac{1}{\frac{y}{x}} [/mm] = [mm] \frac{x}{y}$, [/mm] bloß hat diese Größe keinen mir bekannten Namen.
|
|
|
|