www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Prüfe Differenzierbarkeit
Prüfe Differenzierbarkeit < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Prüfe Differenzierbarkeit: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:37 So 10.12.2006
Autor: Braunstein

Aufgabe
Überprüfen Sie auf Differenzierbarkeit und berechnen Sie ggf. die Ableitung, wo vorhanden:

[mm] f(x)=\begin{cases} x*sinx, & x\not=0 \\ 0, & x=0 \end{cases} [/mm]

Hallo,

mich irritiert die Aufgabenstellung.

Grundsätzlich gilt ja: Funktion ist differenzierbar, wenn diese stetig ist. Nun, die oben angegebene Funktion hat eine Unstetigkeitsstelle in 0, diese wurde aber behoben. Somit ist sie stetig. Naja, und da x und sinx gegen 0 gehen, wenn man sich von links bzw. rechts annähert, kann man daraus schließen, dass die Stetigkeit gegeben und somit die Funktion differenzierbar ist. Nur ... wie soll ich das jetzt beweisen?

Mich einfach mit zwei Limen (lautet so die Mehrzahl von Limes?) annähern und dann differenzieren? Also ...

[mm] \limes_{x\rightarrow0\pm}\bruch{f(x)-f(x_{0}}{x-x_{0}} [/mm]
Für [mm] \bruch{df(x)}{dx} [/mm] = 1*sinx+x*cosx

Freue mich auf ein paar Ratschläge und Tipps.

Gruß, Brauni

        
Bezug
Prüfe Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:53 So 10.12.2006
Autor: Zwerglein

Hi, [mm] MnO_{2}, [/mm]

> Überprüfen Sie auf Differenzierbarkeit und berechnen Sie
> ggf. die Ableitung, wo vorhanden:
>
> [mm]f(x)=\begin{cases} x*sinx, & x\not=0 \\ 0, & x=0 \end{cases}[/mm]

> mich irritiert die Aufgabenstellung.

Mich auch, weil sie mir SO zu einfach erscheint!
x*sin(x) hat bei x=0 KEINE Definitionslücke - wozu also der Aufwand?!
  

> Grundsätzlich gilt ja: Funktion ist differenzierbar, wenn
> diese stetig ist.

Falsch, falscher falschest!
Dann wäre jede stetige Funktion differenzierbar!
Nur die Umkehrung ist richtig:
Eine Funktion, die an einer Stelle nicht stetig ist, kann dort auch nicht differenzierbar sein!

> Nun, die oben angegebene Funktion hat
> eine Unstetigkeitsstelle in 0, diese wurde aber behoben.

Nochmals: Deine obige Funktion hat KEINE Definitionslücke!

> Somit ist sie stetig. Naja, und da x und sinx gegen 0
> gehen, wenn man sich von links bzw. rechts annähert, kann
> man daraus schließen, dass die Stetigkeit gegeben und somit
> die Funktion differenzierbar ist. Nur ... wie soll ich das
> jetzt beweisen?

Die Differenzierbarkeit beweist man entweder mit Hilfe der Grenzwerte der Ableitungen oder mit Hilfe der Differenzenquotienten. Hier geht auch die erste Methode, denn:
f'(x) = sin(x) + x*cos(x)


> Mich einfach mit zwei Limen (lautet so die Mehrzahl von
> Limes?)

Plural von Limes: Limites

> annähern und dann differenzieren? Also ...
>  
> [mm]\limes_{x\rightarrow0\pm}\bruch{f(x)-f(x_{0}}{x-x_{0}}[/mm]
>  Für [mm]\bruch{df(x)}{dx}[/mm] = 1*sinx+x*cosx

Das ist die Ableitung (aber wieso schreibst Du da x [mm] \to [/mm] 0 ?!).
Und nun lässt Du x von rechts und links gegen 0 gehen:

[mm] \limes_{x\rightarrow 0\pm} [/mm] f'(x) = ?

Gleicher Grenzwert => differenzierbar (was hier der Fall ist!).

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de