www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Prüfung auf Injektivität.
Prüfung auf Injektivität. < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Prüfung auf Injektivität.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:48 Mo 01.11.2010
Autor: antoniolopez20

Aufgabe
Aufgabe 1:
Sei f : R -> R de niert durch f(x) = (x + 1) * (x - 1) fur x 2 R.
a) Untersuchen Sie f auf Surjektivitat und Injektivitat.

Das ist die Aufgabe. Ich weiß was Surjektivität und Injektivität bedeuten.
Das, jedes Element der Zielmenge höchstens einmal als Funktionswert angenommen wird. Es werden also keine zwei verschiedenen Elemente der Definitionsmenge auf ein und dasselbe Element der Zielmenge abgebildet.

Also R1-->R2
Die Mengen in R2 werden höchstens einmal als Funktionswert angenommen.
So weit ich verstanden habe keine zwei unterschiedlichen Zahlen aus R1 eingesetz in f dürfen die selbe zahl abbilden in R2.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

f(r1) = r2. // das ist die deffinition der Injektivität auf mein beispiel mit r angewandt.


f(x) = (x + 1) * (x - 1)
f(x) = [mm] x^2-1 [/mm]    // so die Funktion habe ich umgeformt.


Jetz  weißich  nicht wie ich diese Aufgabe lösen soll.
Wie beweise ich nun die Injektivität.
Ich denke schon, dass die Funktion Injektiv ist weil für jeden Wert den ich in [mm] x^2 [/mm] -1 eingebe bekomme ich ein anderen wert und nie den selben.






        
Bezug
Prüfung auf Injektivität.: Antwort
Status: (Antwort) fertig Status 
Datum: 02:16 Mo 01.11.2010
Autor: ChopSuey

Hi Antonio,

die Funktion ist nicht injektiv. Das Ding ist doch eine Parabel.

Wie siehts aus mit $ [mm] x_1 [/mm] = 2 $ und $ [mm] x_2 [/mm] = -2 $ ?

Surjektiv ist sie ebenfalls nicht. Kann die Funktion kleiner als -1 werden ??

Grüße
ChopSuey

Bezug
                
Bezug
Prüfung auf Injektivität.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:36 Mo 01.11.2010
Autor: antoniolopez20

Danke für deine Antwort.
Hoffe so ist das richtig!
x1= 2,  x2=-2

f(2)= [mm] 2^2-1=3 [/mm]
f(-2)= [mm] (-2)^2-1=3 [/mm]

f(x1)=f(x2) also 3=3 aber daraus folgt nicht das x1=x2 ist.
Für die Injektivität gilt: f(x1)=f(x2)= x1=x2
x1 und x2 sind aber in meinem Fall nicht gleich also ist die Injektivität wiederlegt.


Bezug
                        
Bezug
Prüfung auf Injektivität.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:14 Mo 01.11.2010
Autor: ChopSuey

Moin,

auch wenn du das richtige meinst, ist es ratsam, sich ein wenig an gewisse Formalismen zu halten.

Die Def. von Injektivität ist nicht $ [mm] f(x_1) [/mm] = [mm] f(x_2) [/mm] = [mm] x_1 [/mm] = [mm] x_2 [/mm] $.
Das ergibt keinen Sinn.

Def.:

$ f $ injektiv $ [mm] \gdw [/mm] \ [mm] x_1 \not= x_2 \Rightarrow f(x_1) \not= f(x_2) [/mm] $

Viele Grüße
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de