www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Formale Sprachen" - Pumping Lemma
Pumping Lemma < Formale Sprachen < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pumping Lemma: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:00 So 20.09.2009
Autor: Steffi1988

Aufgabe
L = { [mm] a^n b^m c^n [/mm] | n,m > 0 }

Hallo,
ich versuche mit dem Pumping Lemma für reg. Sprachen zu beweisen, dass diese Sprache nicht reg. ist.

Beweise waren noch nie meine Stärke.. hoffe daher wenigstens bischen richtig zu liegen :)

So wie ich das verstanden habe, muss ich mir nun ein beliebiges Wort aus dieser Sprache nehmen, dass von n abhängt.

z.B.:  
x = [mm] a^n c^m b^n \in [/mm] L

Mein Wort x besteht aus uvw.  Also  x = uvw.

Wähle nun
u = [mm] \varepsilon [/mm]
v = [mm] a^n [/mm]  ( |v| [mm] \ge [/mm] 1 ist somit erfüllt)
Die Vorraussetzung uv [mm] \le [/mm] n ist auch erfüllt.

w = [mm] c^m b^n [/mm]



Allg. gilt ja  [mm] uv^{i}w \in [/mm] L für i [mm] \in \IN_{0} [/mm]

Wenn ich jetzt i = 1 nehme,
erhalte ich

x = [mm] a^n c^m b^n \in [/mm] L

i=0 liefert:
x = [mm] c^m b^n \not\in [/mm] L

i=2 liefert
x = [mm] a^{2n} c^m b^n \not\in [/mm] L

Wegen i=0 und i=2 habe ich einen Widerspruch und somit den Beweis erbracht(?).

Ist das korrekt?

Vielen Dank

        
Bezug
Pumping Lemma: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Di 22.09.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Pumping Lemma: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:35 Mi 25.11.2009
Autor: mangaka

Hi,

Dass du ein Wort der Sprache suchst, das abhängig von n ist, ist schon einmal der richtige Weg.

Aber du hast einen kleinen Fehler in deinem Beweis. Du musst zeigen, dass für jede mögliche Zerlegung deines Wortes, das aufgepumpte Wort nicht in der Sprache liegt.
Du hast nur eine Zerlegung angegeben.

Insgesamt gibt es diese:
1)$uvw = [mm] a^i [/mm] + [mm] b^j$ [/mm] mit$ i+j [mm] \leq [/mm] n$
2)$uvw = [mm] a^i [/mm] + [mm] b^j+ c^k$ [/mm] mit $i+j+k [mm] \leq [/mm] n$
3)$uvw = [mm] b^i [/mm] + [mm] c^j$ [/mm] mit $i+j [mm] \leq [/mm] n$

Jetzt brauchst du nur noch zu überlegen, wieso die aufgepumpten Wörter dieser Zerlegungen keine Wörter der Sprache sind.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de