Punkt-Richtungs-Form Gerade < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Gegeben ist eine Gerade [m]g[/m] im [m]\IR^2[/m] durch [m]y = 3x + 7[/m] (Schulnotation). Berechnen Sie eine Punkt-Richtungsform von [m]g[/m]. |
Hallo zusammen,
wenn ich die Aufgabe richtig verstehe, soll die oben genannte Gleichung in Parameterdarstellung/-form einer Geraden dargestellt werden.
Man könnte die "Schulnotation"-Gleichung schreiben als [m]y = ax + b[/m] mit [m]a[/m] als Steigung und [m]b[/m] als y-Achenabschnitt.
Die allgemeine Parameterdarstellung einer Geraden lautet: [m]g: \vec y + \lambda r[/m] mit [m]\vec y[/m] als Ortsvektor der Geraden, [m]\vec r[/m] als Richtungsvektor der Geraden und [m]\lambda[/m] als Parameter.
Da wir uns im [m]\IR^2[/m] befinden, kann man die Punkt-Richtungs-Form der Geraden auch schreiben als: [m]g: \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \lambda \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} [/m]
Somit wäre die Steigung [m]a = 3[/m] anzugeben als [m]\begin{pmatrix} r_1 \\ r_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}[/m], da wir uns um [m]1[/m] auf der x-Achse nach rechts bewegen und um [m]3[/m] nach oben, demnach wäre i.A. die Steigung [m]a[/m] als Quotient der beiden Komponenten des Richtungsvektors [m]\bruch{r_2}{r_1}[/m] anzugeben.
Der Ortsvektor ist ein Vektor, der zu einem Punkt auf der Geraden führt, in diesem Fall zum Schnittpunkt der Geraden auf der y-Achse (y-Achsenabschnitt).
Also wäre der Ortsvektor [m]\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 7 \end{pmatrix}[/m], da auf der x-Achse keine Bewegung/Verschiebung stattfindet und auf der y-Achse um 7 LE (Längeneinheiten) nach oben.
Also gilt für die Punkt-Richtungs-Form der o.g. Gerade mit [m]y = ax + b[/m]:
[m]g: \begin{pmatrix} 0 \\ 7 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 3 \end{pmatrix}[/m]
Ist das soweit alles korrekt?
|
|
|