www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Punkt in einem Volumen
Punkt in einem Volumen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punkt in einem Volumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:56 So 19.09.2004
Autor: mrfiend

Hallo
Ich hab folgendes Problem:
Wie kann ich herausfinden bzw berechnen, ob ein beliebiger Punkt innerhalb oder ausserhalb einer durch einer Pyramide erzeugtem Volumens liegt. Bekannt sind die Ortsvektoren der fünf Punkte der Pyramide sowie die Koordinaten des zu überprüfenden Punktes


Ich habe diese Frage in keinem weiteren Forum gestellt.


        
Bezug
Punkt in einem Volumen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:33 So 19.09.2004
Autor: FriedrichLaher

Die Normalenfußpunkte N auf die Ebenen der Pyramidenflächen müssen innerhalb der Flächen liegen,
d.h. die Normalenfußpunkt N' von den N auf die jeweiligen Kantengeraden der Flächen müssen
innerhalb der Kantenstrecken liegen.


Bezug
        
Bezug
Punkt in einem Volumen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:36 So 19.09.2004
Autor: Marc

Hallo mrfiend,

[willkommenmr]

>  Ich hab folgendes Problem:
>  Wie kann ich herausfinden bzw berechnen, ob ein beliebiger
> Punkt innerhalb oder ausserhalb einer durch einer Pyramide
> erzeugtem Volumens liegt. Bekannt sind die Ortsvektoren der
> fünf Punkte der Pyramide sowie die Koordinaten des zu
> überprüfenden Punktes

Eine Idee wäre, diese Pyramide mit viereckiger Grundfläche in zwei Pyramiden mit dreieckiger Grundfläche zu zerlegen (entlang der Diagonale der Grundfläche).

Für dreiseitige Pyramiden ist das Punktproblem nämlich recht einfach entscheidbar, ganz analog zum zeidimensionalen Fall:

Betrachte ein zweidimensionales Dreieck, dieses wird ja sozusagen von zwei Vektoren aufgespannt (z.B. Vektor [mm] $\vec{c}$ [/mm] und [mm] $\vec{b}$) [/mm] (der Einfachheit halber sei A der Ursprung).

Ein Punkt P liegt nun genau dann innerhalb des Dreiecks, wenn für sein Ortsvektor [mm] $\vec{p}$ [/mm] folgende Darstellung möglich ist:

[mm] $\vec{p}=s*\vec{c}+t*\vec{b}$ [/mm] mit [mm] $s,t\ge0$ [/mm] und [mm] $s+t\le [/mm] 1$.
Überlege dir mal selbst, warum das so ist.

Ganz analog kann man so feststellen, wann ein Punkt P innerhalb einer dreiseitigen Pyramide liegt.

Falls dir diese Ansätze nicht reichen, frage bitte noch einmal nach ;-)

Viele Grüße,
Marc



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de