www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Punkt mit Abstand von Ebene
Punkt mit Abstand von Ebene < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punkt mit Abstand von Ebene: Koordina Punkt Abstand gegeben
Status: (Frage) beantwortet Status 
Datum: 16:24 Do 11.11.2010
Autor: kaufparkangucker

Aufgabe
A(3|4|5); B(5|6|6); C(8|6|6); D(6|4|5); M(5,5|5|5,5);

ABCD bilden eine Raute. Die Gerade g die senkrecht auf der Raute steht und durch den Diagonalenschnittpunkt M geht hat den Richtungsvektor (0|1|-2).
Die Raute ist Grundfläche einer Pyramide deren Spitze S auf g liegt. Bestimmen sie die Koordinaten der Spitzen so das die dazugehörigen Spitzen die Höhe 10 haben.

Lösungen:
S'  (5,5 | 5+2*sqrt(5) | 5,5-4*sqrt(5))
S'' (5,5 | 5-2*sqrt(5) | 5,5+4*sqrt(5))

Hallo,

die Aufgabe bekomme ich einfach nicht so gelöst das ich auf die gegebenen Ergebnisse komme.

Mein Ansatz ist so das ich den Normalenvektor(N) von g als Richtungsvektor und die Werte von M als Ortsvektor nehme. Damit habe ich g in der Form:
g=M + u*N
Für u setze ich jetzt den Abstand 10 ein und berechne gx ; gy ;gz  was S' entspricht. Mit -10 als Abstand finde ich dann S''.
Damit bekomme ich für S (5,5 | 15 | -14,5) raus was ja nicht stimmt.

nehme ich die normale Abstandsformel umd den Abstand von SM:
10=sqrt[ [mm] (5,5-Sx)^2 [/mm] + [mm] (5-Sy)^2 [/mm] + [mm] (5,5-Sz)^2 [/mm] ]
habe ich leider keine Idee wie ich es lösen soll.

Ich hoffe mir kann jemand helfen und mir sagen wie man das Problem löst.

Vielen Dank für die Hilfe

Rocco

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Punkt mit Abstand von Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Do 11.11.2010
Autor: MathePower

Hallo kaufparkangucker,


[willkommenmr]


> A(3|4|5); B(5|6|6); C(8|6|6); D(6|4|5); M(5,5|5|5,5);
>  
> ABCD bilden eine Raute. Die Gerade g die senkrecht auf der
> Raute steht und durch den Diagonalenschnittpunkt M geht hat
> den Richtungsvektor (0|1|-2).
>  Die Raute ist Grundfläche einer Pyramide deren Spitze S
> auf g liegt. Bestimmen sie die Koordinaten der Spitzen so
> das die dazugehörigen Spitzen die Höhe 10 haben.
>  
> Lösungen:
>  S'  (5,5 | 5+2*sqrt(5) | 5,5-4*sqrt(5))
>  S'' (5,5 | 5-2*sqrt(5) | 5,5+4*sqrt(5))
>  Hallo,
>  
> die Aufgabe bekomme ich einfach nicht so gelöst das ich
> auf die gegebenen Ergebnisse komme.
>  
> Mein Ansatz ist so das ich den Normalenvektor(N) von g als
> Richtungsvektor und die Werte von M als Ortsvektor nehme.
> Damit habe ich g in der Form:
>  g=M + u*N
>  Für u setze ich jetzt den Abstand 10 ein und berechne gx
> ; gy ;gz  was S' entspricht. Mit -10 als Abstand finde ich
> dann S''.
>  Damit bekomme ich für S (5,5 | 15 | -14,5) raus was ja
> nicht stimmt.


Der Betrag von u*N muß 10 sein, demnach

[mm]\vmat{u*N}=10[/mm]

Daraus nun das  u bestimmen.


>  
> nehme ich die normale Abstandsformel umd den Abstand von
> SM:
>  10=sqrt[ [mm](5,5-Sx)^2[/mm] + [mm](5-Sy)^2[/mm] + [mm](5,5-Sz)^2[/mm] ]
>  habe ich leider keine Idee wie ich es lösen soll.
>  
> Ich hoffe mir kann jemand helfen und mir sagen wie man das
> Problem löst.
>  
> Vielen Dank für die Hilfe
>  
> Rocco
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
Punkt mit Abstand von Ebene: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 06:55 Fr 12.11.2010
Autor: kaufparkangucker

|u*N|=10  hatte ich zuerst auch mal hingeschrieben.
Löst man das auf steht follgendes da:
Mit N=(0|1|-2)

[mm] sqrt[(0-ux)^2 [/mm] + [mm] (1-uy)^2 [/mm] + [mm] (-2-uz)^2] [/mm] = 10

Und hier weis ich nicht weiter. Ich habe keine Ahnung wie ich daraus ux uy uz berechnen soll.

Das sollte auch gehen indem ich die Ebene in Koordinatenform formuliere (aus ABC Parameterform aufstellen und diese dann in die Koordinatenform überführen):
0*ux + 1*uy -2*uz + 6 = 0
Hier weis ich allerdings genau so nicht wie ich ux uy uz berechnen soll.

Danke für weitere Hilfe.

fG Rocco

Bezug
                        
Bezug
Punkt mit Abstand von Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 08:51 Fr 12.11.2010
Autor: Pappus


> |u*N|=10  hatte ich zuerst auch mal hingeschrieben.
>  Löst man das auf steht follgendes da:
>  Mit N=(0|1|-2)
>  
> [mm]sqrt[(0-ux)^2[/mm] + [mm](1-uy)^2[/mm] + [mm](-2-uz)^2][/mm] = 10
>  
> Und hier weis ich nicht weiter. Ich habe keine Ahnung wie
> ich daraus ux uy uz berechnen soll.
>  
> Das sollte auch gehen indem ich die Ebene in
> Koordinatenform formuliere (aus ABC Parameterform
> aufstellen und diese dann in die Koordinatenform
> überführen):
>  0*ux + 1*uy -2*uz + 6 = 0
>  Hier weis ich allerdings genau so nicht wie ich ux uy uz
> berechnen soll.
>  
> Danke für weitere Hilfe.
>  
> fG Rocco

Guten Morgen!

1. $S [mm] \in g~\implies~ \vec [/mm] s = [mm] \vektor{5,5\\5\\5,5}+u \cdot \vektor{0\\1\\-2}$ [/mm]

2. MathePower schrieb Dir, dass Du diese Gleichung: [mm] $|u\cdot \vec [/mm] n| = 10$  nach u auflösen sollst.

3. Betragsstriche "verschwinden" durch Quadrieren:

[mm] u^2 \cdot \vektor{0\\1\\-2}^2=100~\implies~5u^2=100$ [/mm]

4. u berechnen und in g einsetzen. Fettich!

Salve

Pappus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de