www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Punkte auf koordinatenachsen
Punkte auf koordinatenachsen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punkte auf koordinatenachsen: Aufgabe über Nullstellen
Status: (Frage) beantwortet Status 
Datum: 17:59 Di 08.12.2009
Autor: tefeiro

Aufgabe
h(X)= [mm] -8x^3-27 [/mm]
l(m)= [mm] m^4-m^2-2 [/mm]
k(x)= [mm] \bruch{1}{x}+\bruch{1}{x-1} [/mm]
k(x)= [mm] \bruch{1}{4}2^{x-1}-\bruch{1}{2} [/mm]

Hallo,
ich soll die Schnittpunkte mit den Koordinatenachsen herausfinden. Die y-Achsten ´bekomme ich ducrh x=0. Wie aber bekomme ich die Schnittpunkte mit der x Achse. Ich binn am verzweifeln und benötige dringend einen Lösungsansatz. Wäre nett wenn mir einer helfen könnte.

        
Bezug
Punkte auf koordinatenachsen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Di 08.12.2009
Autor: abakus


> h(X)= [mm]-8x^3-27[/mm]
>  l(m)= [mm]m^4-m^2-2[/mm]
>  k(x)= [mm]\bruch{1}{x}+\bruch{1}{x-1}[/mm]
>  k(x)= [mm]\bruch{1}{4}2^{x-1}-\bruch{1}{2}[/mm]
>  Hallo,
>  ich soll die Schnittpunkte mit den Koordinatenachsen
> herausfinden. Die y-Achsten ´bekomme ich ducrh x=0. Wie
> aber bekomme ich die Schnittpunkte mit der x Achse. Ich
> binn am verzweifeln und benötige dringend einen
> Lösungsansatz. Wäre nett wenn mir einer helfen könnte.

Berechne die Nullstellen (löse also die Gleichungen f(x)=0) und füge den so gefundenen x-Werten noch die y-Koordinate "0" bei.
Gruß Abakus


Bezug
        
Bezug
Punkte auf koordinatenachsen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:05 Di 08.12.2009
Autor: tefeiro

Ja dass ist mir schon klar.Aber ich muss ja dann auf x Auflösen. Wie das bei den Aufgaben geht ist mir aber ein Rätsel.

Bezug
                
Bezug
Punkte auf koordinatenachsen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:14 Di 08.12.2009
Autor: angela.h.b.


> Ja dass ist mir schon klar.Aber ich muss ja dann auf x
> Auflösen. Wie das bei den Aufgaben geht ist mir aber ein
> Rätsel.

Hallo,

dann fang doch einfach mal an und laß uns ein wenig bei Deinen Versuchen zuschauen.

Also: erstmal =0 setzen. (Zumindest bei h solltest dDu doch  noch ein Stückchen weiter kommen.)

Wenn man dann was sieht, fallem einem die guten Tips viel besser ein...

Gruß v. Angela



Bezug
                        
Bezug
Punkte auf koordinatenachsen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:25 Di 08.12.2009
Autor: tefeiro

Bei h(x) würde ich die -27 auf dei andere Seite Ziehen.
[mm] x^3=27 [/mm] Aber was mache ich dann mit der [mm] x^3? [/mm] Wenn dort jetzt ein [mm] x^2 [/mm] stehen würde müsste ich nur die Wurzel ziehen.
Bei l(m)
[mm] -m^2+m^4=-2 [/mm]

dann [mm] m^2 [/mm] ausklammern
[mm] m^2(m^2)=-2 [/mm]
Dass bedeutet nur eine Nullstelle bei x=0

Bei k(X) habe ich ein Problen mit 2^(x-19

Und bei der Aufgabe mit den Brüchen: Muss ich da mal die Brüche nehmen?

Bezug
                                
Bezug
Punkte auf koordinatenachsen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 Di 08.12.2009
Autor: Steffi21

Hallo,

bei h(x) hast du aber gemogelt, hast du die 8 verkauft?

[mm] 0=-8x^{3}-27 [/mm]

[mm] 27=-8x^{3} [/mm]

[mm] x^{3}=-\bruch{27}{8} [/mm]

x= ...

bei l(m) hast du aber sehr großzügig ausgeklammert, das solltest du dir noch einmal anschauen

[mm] 0=m^{4}-m^{2}-2 [/mm]

hier kannst du Substitution machen [mm] z:=m^{2} [/mm]

[mm] 0=z^{2}-z-2 [/mm]

jetzt kannst du diese quadratische Gleichung lösen, dann aber Rücksubstitution machen

bei k(x) bilde zunächst den Hauptnenner

Steffi

Bezug
                                        
Bezug
Punkte auf koordinatenachsen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:40 Di 08.12.2009
Autor: tefeiro

[mm] x^3= -\bruch{27}{8} [/mm]
Muss ich da die dritte wurzel ziehen?

Bezug
                                                
Bezug
Punkte auf koordinatenachsen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 Di 08.12.2009
Autor: reverend

Ja, genau. Das geht hier sogar "zu Fuß".

lg
rev

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de