www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Punkte in Ebenen überprüfen
Punkte in Ebenen überprüfen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punkte in Ebenen überprüfen: Tipps
Status: (Frage) beantwortet Status 
Datum: 20:45 Mo 09.02.2009
Autor: f4b

Aufgabe
Eine Ebene E geht durch den Punkt P (2 /-5/ 7 ) und hat den Normalenvektor ( 2/ 1/ -2). Prüfen Sie ob folgende Punkte in der Ebene E liegen:
A ( 2/ 7 / 1)

Wie genau gehe ich da vor?
(Es gibt glaube ich mehrere Lösungsansätze). Ich weiß, dass es was mit den Normalen zu tun hat und wahrscheinlich kann ich dafür auch die Formel (x-a)*n=0 verwenden...?

Bitte um Hilfe :(

        
Bezug
Punkte in Ebenen überprüfen: Normalenform
Status: (Antwort) fertig Status 
Datum: 20:56 Mo 09.02.2009
Autor: Loddar

Hallo f4b!


Du hast die "Lösungsformel" mit der Normalenform [mm] $\left[\vec{x}-\vec{p}\right]*\vec{n} [/mm] \ = \ 0$ bereits selber genannt.

Setze für [mm] $\vec{x}$ [/mm] die gegebenen Punktkordinaten ein und überpüfe, ob die Gleichung erfüllt ist.


Gruß
Loddar


Bezug
                
Bezug
Punkte in Ebenen überprüfen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:36 Mo 09.02.2009
Autor: f4b

kommt dann am ende raus:  0-12-12 = 0

und damit ist der Punkt nicht in der Ebene?

Bezug
                        
Bezug
Punkte in Ebenen überprüfen: richtig
Status: (Antwort) fertig Status 
Datum: 21:44 Mo 09.02.2009
Autor: Loddar

Hallo f4b!


[ok]


Gruß
Loddar


Bezug
        
Bezug
Punkte in Ebenen überprüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:45 Mo 09.02.2009
Autor: abakus


> Eine Ebene E geht durch den Punkt P (2 /-5/ 7 ) und hat den
> Normalenvektor ( 2/ 1/ -2). Prüfen Sie ob folgende Punkte
> in der Ebene E liegen:
> A ( 2/ 7 / 1)
>
> Wie genau gehe ich da vor?
>  (Es gibt glaube ich mehrere Lösungsansätze). Ich weiß,
> dass es was mit den Normalen zu tun hat und wahrscheinlich
> kann ich dafür auch die Formel (x-a)*n=0 verwenden...?

Du kannst auch die Tatsache nutzen, dass die Koordinaten des Normalenvektors als Faktoren in der parameterfreinen Ebenengleichung vorkommen.
Die Ebene hat dann die Gleichung
2x + 1y -2z = d
Da der Punkt P in der Ebene liegt, erfüllen seine Koordinaten die Ebenengleichung:
2*2+1*(-5)-2*7=d
d=-15
Die Ebenengleichung lautet also 2x + 1y -2z = -15.
Mit x=2, y=7 und z=1 kommt aber nicht -15 heraus, also liegt A nicht in der Ebene.
Gruß Abakus

>  
> Bitte um Hilfe :(


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de