www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Punktemenge
Punktemenge < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punktemenge: Überprüfung
Status: (Frage) beantwortet Status 
Datum: 16:01 So 17.01.2010
Autor: Mausibaerle

Aufgabe
Zeichne die Punktemenge, für die gilt:
a)   [mm] x^{2}-y^{2}\le0 [/mm]
b)   [mm] x^{2}+y^{2}-2xy\le1 [/mm]

Hallo Ihr Lieben,
ich bin mir mit diesem Thema ziemlich unsicher und würde deshalb gerne wissen, ob meine Überlegungen SInn machen.

Für a) ergeben sich mir zwei Ungleichungen, nämlich:
1. [mm] y\ge0 [/mm] : [mm] y\ge [/mm] x
2. y<0    : y<-x
Demnach ergibt sich in der Zeichnung im Koordiantensystem ein Bereich von den Winkelhalbierenden des 2. und 3. Quadranten, einschließlich der Geraden.

Für b) folglich:
1.  [mm] y\ge [/mm] x-1
2.  [mm] y\ge [/mm] x+1
Hier würde sich meinen Überlegungen nach der Bereich oberhalb von x+1 einschließlich der Gerade selber ergeben.

Hab ich mich da irgendwo verhaut oder macht es Sinn?!
Danke schön!! Schönen Sonntag noch...




        
Bezug
Punktemenge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 So 17.01.2010
Autor: abakus


> Zeichne die Punktemenge, für die gilt:
>  a)   [mm]x^{2}-y^{2}\le0[/mm]
>  b)   [mm]x^{2}+y^{2}-2xy\le1[/mm]
>  Hallo Ihr Lieben,
>  ich bin mir mit diesem Thema ziemlich unsicher und würde
> deshalb gerne wissen, ob meine Überlegungen SInn machen.
>  
> Für a) ergeben sich mir zwei Ungleichungen, nämlich:
>  1. [mm]y\ge0[/mm] : [mm]y\ge[/mm] x
>  2. y<0    : y<-x

Hallo,
das geht mit einer Ungleichung: | y | [mm] \ge [/mm] | x |

>  Demnach ergibt sich in der Zeichnung im Koordiantensystem
> ein Bereich von den Winkelhalbierenden des 2. und 3.
> Quadranten, einschließlich der Geraden.zweiter Lösungsbereich liegt

Die beiden Lösungsbereiche liegen zwischen den Winkelhalbierenden des 1. und 2. Quadranten
sowie
zwischen den Winkelhalbierenden des 3. und 4. Quadranten.

>  
> Für b) folglich:
>  1.  [mm]y\ge[/mm] x-1
>  2.  [mm]y\ge[/mm] x+1
>  Hier würde sich meinen Überlegungen nach der Bereich
> oberhalb von x+1 einschließlich der Gerade selber
> ergeben.

Aus [mm]x^{2}+y^{2}-2xy\le1[/mm] folgt
[mm](x-y)^2\le1[/mm]
und daraus
| x-y [mm] |\le [/mm] 1.
Für [mm] x\ge [/mm] y (also für y [mm] \le [/mm] x) wird daraus x-y [mm] \le [/mm] 1 bzw. [mm] x-1\le [/mm] y. Zusammengefasst ergibt das
[mm] x-1\le [/mm] y [mm] \le [/mm] x. Das ist ein Streifen zwischen zwei parallelen Geraden.

Im Fall x<y würde [mm] -(x-y)\le [/mm] 1 gelten, also [mm] y\le [/mm] x+1. Zusammengefast ergibt das [mm] x Fas ist wieder ein Streifen zwischen paralelen Geraden, der sich an den Streigen des ersten Falles anschließt.
Ingesamt erhältst du den Streifen zwischen y=x-1 und y=x+1 (einschließlich Begrenzungsgeraden).

Gruß Abakus

>  
> Hab ich mich da irgendwo verhaut oder macht es Sinn?!
>  Danke schön!! Schönen Sonntag noch...
>  
>
>  


Bezug
                
Bezug
Punktemenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:05 So 17.01.2010
Autor: Mausibaerle

Warum haben wir im Endefekt dann zwei verschiedene Lösungen?! Wo liegt denn dann mein Fehler, warum kann ich es nicht mit zwei Ungleichungen lösen?!


Bezug
                        
Bezug
Punktemenge: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 So 17.01.2010
Autor: abakus


> Warum haben wir im Endefekt dann zwei verschiedene
> Lösungen?! Wo liegt denn dann mein Fehler, warum kann ich
> es nicht mit zwei Ungleichungen lösen?!

Das kannst du schon machen, aber dann bitte auch gründlich.

Aus [mm] y^2\ge x^2 [/mm] Kann man tatsächlich zwei Fälle ableiten.
Fall 1: [mm] y\ge [/mm] 0
Dann gilt [mm] y\ge [/mm] |x| (nicht nur [mm] y\ge [/mm] x!)
Fall 1.1: [mm] x\ge [/mm] 0
Daraus wird [mm] y\ge [/mm] x [mm] \ge [/mm] 0
Fall 1.2: x<0 und damit (das brauchen wir gleich) gilt -x>0.  
Dann gilt [mm] y\ge-x, [/mm] ingesamt also y [mm] \ge-x>0. [/mm]

Auch im Fall 2 (y<0) musst du getrennt die Unter-Fälle [mm] x\ge [/mm] 0 und x<0 betrachten.
Gruß Abakus

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de