www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Punktemenge kennzeichen
Punktemenge kennzeichen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punktemenge kennzeichen: Ich versteh nix
Status: (Frage) beantwortet Status 
Datum: 19:23 Mo 28.05.2007
Autor: Goldschatz

Aufgabe
Kennzeichenen sie die folgende Punktemenge M={(x;f(x))|f´(x)<0 [mm] \wedge [/mm] f´´(x)>0}

hallo ih Lieben!
Ja der Witz an der Sache is, dass wir das noch gar nie n der Schulwe gemacht haben und meine mir so einleuchtende Idee vollkommen falsch ist, ich aber in 2 Wochen Abi über das schreib :)

Ja in der Lösung hab ich naürlich gesehen was gekennzeichnet ist, allerding leuchtet s mir ganz und gar nicht ein wie ich darauf komme.

[Dateianhang nicht öffentlich]

Danke für eure Antworten

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Punktemenge kennzeichen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 Mo 28.05.2007
Autor: schachuzipus

Hallo Saskia,

ich nehme an, die Funktion $f$, von der in der Definition der Menge $M$ die Rede ist, ist diejenige, deren Graph du beigefügt hast.

Diesem entnehme ich, dass [mm] $f(x)=\frac{1}{27}x^4+\frac{2}{9}x^3-2x-3$ [/mm] ist?!


Damit kannst du schon mal $f'(x)$ und $f''(x)$ bestimmen.

$f'(x)=.....$

[mm] $f''(x)=\frac{4}{9}x^2+\frac{4}{3}x$ [/mm]

Diese zweite Bedingung $f''(x)>0$ ist auf den ersten Blick einfacher zu bestimmen als die andere ($f'(x)<0$)

[mm] $f''(x)>0\gdw\frac{4}{9}x^2+\frac{4}{3}x>0\gdw\frac{4}{3}x(\frac{1}{3}x+1)>0$ [/mm]

Nun ist ein Produkt positiv, wenn beide Faktoren positiv sind [mm] \underline{oder} [/mm] wenn beide Faktoren negativ sind.

Prüfe das mal nach und du hast schonmal eine der zwei geforderten Bedingungen heraus.

Für die andere Bedingung bilde mal $f'(x)$ und schau mal, wo da Nullstellen sind, also betrachte $f'(x)=0$

Eine NS kannst du schnell raten, dann kannste eine Polynomdivision machen und die andere(n) NS(en) bestimmen.

Dann schau mal, wie das für $f'$ links und rechts von den Nullstellen aussieht.

Bedenke, dass für die Punkte [mm] $(x_0,f(x_0))\in [/mm] M$ [mm] \underline{beide} [/mm] Bedingungen [mm] $f''(x_0)>0$ \underline{und} $f'(x_0)<0$ [/mm] erfüllt sein müssen.

Durch die erste Bedingung bist du ja schon recht eingeschränkt.

Probier mit diesen Tipps mal ein bissl rum ;-)

Hoffe, es hilft etwas

LG

schachuzipus

Bezug
                
Bezug
Punktemenge kennzeichen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:16 Mo 28.05.2007
Autor: Goldschatz

ah bingo... ich hab da völlig in die falsche Richtung gedacht und alle Aleitungen gezeichnet...

jetz leuchtet es mir ein Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de