www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Punktweise/Glm. Konvergenz
Punktweise/Glm. Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punktweise/Glm. Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:00 So 21.01.2007
Autor: Fuffi

Aufgabe
Es sei [mm] (f_{n}) \subseteq C^{\infty} [/mm] [-1,1] , [mm] f_{n}(x):=n^{-1}exp(-n^{3}x^{2}). [/mm] Gilt [mm] f^{'}n \to [/mm] 0 punktweise bzw. gleichmäßig?

Also ich habe als erstes die Ableitung gebildet:

[mm] f^{'}(x)=-2xn^{2}*e^{-n^{3}x^{2}} [/mm]

Jetzt um diese Funktion auf gleichmäßige bzw. punktweise Konvergenz zu untersuchen habe ich versucht die Grenzfunktion zu bilden. Allerdings komme ich nicht weiter ich wäre dankbar wenn mir jemand bei der Lösung dieser Aufagbe helfen könnte.

Ich habe diese Frage in keinem anderen Forum und auf keinen anderen Internetseiten gestellt.


        
Bezug
Punktweise/Glm. Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:07 Mo 22.01.2007
Autor: angela.h.b.


> Es sei [mm](f_{n}) \subseteq C^{\infty}[/mm] [-1,1] ,
> [mm]f_{n}(x):=n^{-1}exp(-n^{3}x^{2}).[/mm] Gilt [mm]f^{'}n \to[/mm] 0
> punktweise bzw. gleichmäßig?
>  Also ich habe als erstes die Ableitung gebildet:
>  
> [mm]f^{'}(x)=-2xn^{2}*e^{-n^{3}x^{2}}[/mm]
>  
> Jetzt um diese Funktion auf gleichmäßige bzw. punktweise
> Konvergenz zu untersuchen habe ich versucht die
> Grenzfunktion zu bilden.

Hallo,

die potentielle Grenzfunktion ist oben ja schon angegeben, f(x)=0.

Die punktweise Konvrgenz dürfte recht einfach zu zeigen sein:

[mm] f^{'}(x)=\bruch{-2xn^{2}}{e^{n^{3}x^{2}}} [/mm]

Für x=0 ist es sowieso klar, und für [mm] x\not=0 [/mm] kannst Du den Grenzwert mit l'Hospital bestimmen.

Ich vermute einmal, daß die gleichmäßige Stetigkeit links der Null scheitern wird, weil man da Peaks hat, die für wachsendes n immer größer werden.

Gruß v. Angela

Bezug
                
Bezug
Punktweise/Glm. Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:06 Mo 22.01.2007
Autor: Fuffi

Hallo Angela,
danke für deinen Tip mit der punktweisen Konvergenz. Die hatte mir noch gefehlt. Bei der gleichmäßigen Konvergenz liegst du richtig. Ich habe gezeigt, dass [mm] \parallel f_{n}^{'} \parallel \to \infty [/mm] für n [mm] \to \infty. [/mm] Das dürfte doch reichen um zu zeigen, das [mm] f_{n}^{'} [/mm] nicht glm. kovergent ist oder?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de