www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Punktweise Konvergenz
Punktweise Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punktweise Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:48 Mi 25.02.2009
Autor: Heureka89

Aufgabe
Zeigen Sie, dass [mm] (f_n) [/mm] auf [0,1] punktweise gegen 0 konvergiert.
[mm] f_n(x)=\begin{cases} 4n^2x, & \mbox{für } 0 \le x \le 1/2n \mbox{ } \\ 4n - 4n^2x, & \mbox{für } 1/2n < x \le 1/n\mbox{ } \\ 0, & \mbox{für } 1/n < x \le 1\mbox{ }\end{cases} [/mm]

Also ich verstehe nicht, wieso diese Fuktionenfolge punktweise gegen 0 konvergiert. Also bereits auf dem ersten Intervall ist mir das nicht klar. [mm] 4nx^2 [/mm] konvergiert doch gegen unendlich!?

        
Bezug
Punktweise Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:08 Mi 25.02.2009
Autor: Blech


> Zeigen Sie, dass [mm](f_n)[/mm] auf [0,1] punktweise gegen 0
> konvergiert.
>  [mm]f_n(x)=\begin{cases} 4n^2x, & \mbox{für } 0 \le x \le 1/2n \mbox{ } \\ 4n - 4n^2x, & \mbox{für } 1/2n < x \le 1/n\mbox{ } \\ 0, & \mbox{für } 1/n < x \le 1\mbox{ }\end{cases}[/mm]
>  
> Also ich verstehe nicht, wieso diese Fuktionenfolge
> punktweise gegen 0 konvergiert. Also bereits auf dem ersten
> Intervall ist mir das nicht klar. [mm]4nx^2[/mm] konvergiert doch
> gegen unendlich!?

Ja, aber auf welchem Intervall ist [mm] $f_n(x)=4nx^2$? [/mm]

Die ersten beiden Fälle konvergieren nicht gegen 0, aber das Intervall, auf dem die Folge ungleich 0 ist, verschwindet, weil 1/n gegen 0 geht. Du sollst jetzt zeigen, daß das formal der punktweisen Konvergenz entspricht.

Ist eine Vorbereitung, um zu zeigen, warum es sinnvoll ist zusätzlich noch die gleichmäßige Konvergenz einzuführen, wo die Folge auf dem ganzen Intervall gleichmäßig (ach nee) gegen den Grenzwert gehen muß, und man nicht einfach die häßlichen Teile wie hier am linken Intervallrand zerquetschen kann.

ciao
Stefan


Bezug
                
Bezug
Punktweise Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:19 Mi 25.02.2009
Autor: Heureka89

Vollständig habe ich es leider noch nicht verstanden. Dass die ersten beiden Intervalle verschwinden, verstehe ich.
Aber wenn ich nun die Definition der punktweisen Konvergenz benutze:
[mm] \forall [/mm] x [mm] \in [/mm] [0,1/2n] : [mm] \limes_{n\rightarrow\infty} f_n(x) [/mm] = f(x)
also in dem Fall hier: [mm] \limes_{n\rightarrow\infty} 4n^{2}x [/mm] = 0
Ist dieser Grenzwert gleich 0, weil x gegen 0 geht?

Bezug
                        
Bezug
Punktweise Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:53 Mi 25.02.2009
Autor: Blech


> Vollständig habe ich es leider noch nicht verstanden. Dass
> die ersten beiden Intervalle verschwinden, verstehe ich.
>  Aber wenn ich nun die Definition der punktweisen
> Konvergenz benutze:
>  [mm]\forall[/mm] x [mm]\in[/mm] [0,1/2n] : [mm]\limes_{n\rightarrow\infty} f_n(x)[/mm]
> = f(x)
>  also in dem Fall hier: [mm]\limes_{n\rightarrow\infty} 4n^{2}x[/mm]
> = 0

Nein.

Wieso setzt Du [mm] $f_n(x)=4n^2x$? [/mm]

$ [mm] f_n(x)=\begin{cases} 4n^2x, & \mbox{für } 0 \le x \le 1/2n \mbox{ } \\ 4n - 4n^2x, & \mbox{für } 1/2n < x \le 1/n\mbox{ } \\ 0, & \mbox{für } 1/n < x \le 1\mbox{ }\end{cases} [/mm] $

Welcher der drei Fälle eintritt, hängt von n ab. Egal wie Du x wählst, wenn Du n groß genug werden läßt, wird immer der dritte Fall eintreten.

Für alle x (wie wählen jetzt einfach mal x=1/100) muß gelten [mm]\limes_{n\rightarrow\infty} f_n(x)=0[/mm] (hier also [mm]\limes_{n\rightarrow\infty} f_n(0.01)=0[/mm]. Gilt [mm]\limes_{n\rightarrow\infty} f_n(0.01)=0[/mm]? Ja, weil für n>100 [mm] $f_n(0.01)=0$. [/mm]

Bei der Grenzwertbetrachtung ist x fest. Wir wählen uns zuerst ein beliebiges x und schauen dann, ob der Grenzwert für dieses feste x 0 ist.

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de