www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Pyramide
Pyramide < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pyramide: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:37 Di 11.04.2006
Autor: hase-hh

Aufgabe
Gegeben sind vier Punkte, die die Ecken einer dreiseitigen Pyramide, mit
dreieckiger Grundfläche beschreiben. A(2/0/0) , B(2/6/0), C(0/2/0), D(1/2/4).

Bestimmen Sie den Abstand zwischen D und der Grundfläche.



Moin,

komme mit dieser Aufgabe nicht weiter, da der Normalenvektor nicht befriedigend für eine Weiterrechnung der Aufgabe ist. Mache ich irgendetwas falsch???

1) Ich habe zunächst die Vektoren  [mm] \overrightarrow{AB} [/mm] und  [mm] \overrightarrow{AC} [/mm] bestimmt:

[mm] \overrightarrow{AB} [/mm] =  [mm] \vektor{2\\6\\0} [/mm]  - [mm] \vektor{2\\0\\0} [/mm]  =  [mm] \vektor{0\\6\\0} [/mm]


[mm] \overrightarrow{AC} [/mm] =  [mm] \vektor{0\\2\\0} [/mm]  - [mm] \vektor{2\\0\\0} [/mm]  =  [mm] \vektor{-2\\2\\0} [/mm]


[Nebenbei ergibt sich daraus E:  [mm] \overrightarrow{x} [/mm] =  [mm] \vektor{2\\0\\0} [/mm] + [mm] r\vektor{0\\6\\0} [/mm] + [mm] s\vektor{-2\\2\\0} [/mm] ]

Daraus ergeben sich wegen [mm] \overrightarrow{n} [/mm] * [mm] \overrightarrow{AB} [/mm] = 0
und  [mm] \overrightarrow{n} [/mm] * [mm] \overrightarrow{AC} [/mm] = 0

die Gleichungen

6y = 0

-2x + 2y = 0


Das führt aber auf  [mm] \overrightarrow{n} [/mm] =  [mm] \vektor{0\\0\\0} [/mm]

???



gruss
wolfgang



        
Bezug
Pyramide: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 Di 11.04.2006
Autor: Disap

Hallo hase-hh.

> Gegeben sind vier Punkte, die die Ecken einer dreiseitigen
> Pyramide, mit
> dreieckiger Grundfläche beschreiben. A(2/0/0) , B(2/6/0),
> C(0/2/0), D(1/2/4).
>  
> Bestimmen Sie den Abstand zwischen D und der Grundfläche.
>  
>
>
> Moin,
>  
> komme mit dieser Aufgabe nicht weiter, da der
> Normalenvektor nicht befriedigend für eine Weiterrechnung
> der Aufgabe ist. Mache ich irgendetwas falsch???
>  
> 1) Ich habe zunächst die Vektoren  [mm]\overrightarrow{AB}[/mm] und  
> [mm]\overrightarrow{AC}[/mm] bestimmt:
>  
> [mm]\overrightarrow{AB}[/mm] =  [mm]\vektor{2\\6\\0}[/mm]  - [mm]\vektor{2\\0\\0}[/mm]
>  =  [mm]\vektor{0\\6\\0}[/mm]
>  

[ok]

> [mm]\overrightarrow{AC}[/mm] =  [mm]\vektor{0\\2\\0}[/mm]  - [mm]\vektor{2\\0\\0}[/mm]
>  =  [mm]\vektor{-2\\2\\0}[/mm]
>  

[ok]

> [Nebenbei ergibt sich daraus E:  [mm]\overrightarrow{x}[/mm] =  
> [mm]\vektor{2\\0\\0}[/mm] + [mm]r\vektor{0\\6\\0}[/mm] + [mm]s\vektor{-2\\2\\0}[/mm]
> ]

[ok]

> Daraus ergeben sich wegen [mm]\overrightarrow{n}[/mm] *
> [mm]\overrightarrow{AB}[/mm] = 0
>  und  [mm]\overrightarrow{n}[/mm] * [mm]\overrightarrow{AC}[/mm] = 0
>  
> die Gleichungen
>  
> 6y = 0
>
> -2x + 2y = 0
>  

[ok]

> Das führt aber auf  [mm]\overrightarrow{n}[/mm] =  [mm]\vektor{0\\0\\0}[/mm]
>  
> ???

Eigentlich heißen die Gleichungen ja:

$0x+6y+0z = 0$

sowie

$-2x + 2y +0z= 0$

Du kannst jetzt hier nicht einfach beigehen und sagen, x,y und z ist null, dann stimmen die Gleichungen zwar, aber du hast eben keinen Normalenvektor.

In der ersten Gleichung

$0x+6y+0z = 0$

musst du y als null definieren, sonst wird die Gleichung nie wahr! Hierbei sind x und z egal

Für die zweite Gleichung gilt schon, dass [mm] \red{y=0} [/mm] ist

$-2x + [mm] 2\red{y} [/mm] +0z= 0$

Um nun die Bedingung noch zu erfüllen, muss auch x=0 gesetzt werden. Weil egal wie groß z ist, du kommst niemals auf etwas größeres als 0...

Nun hast du x und y als 0 definiert, bleibt nur noch z. Und das kannst du wählen, wie du willst. Bloß halt nich null, was das ergibt wenig Sinn. 1 bietet sich an.

Zur Probe bilden wir mal das Kreuzprodukt

[mm] $\vec{n}=\vektor{0\\6\\0} \times\vektor{-2\\2\\0} [/mm] = [mm] \vektor{0\\0\\12}$ [/mm]

Es ist ein vielfaches zu dem bestimmten [mm] \vektor{0\\0\\1} [/mm] aus den beiden Gleichungen.


Hats geholfen?

> gruss
>  wolfgang
>  

Gruss
Disap

>  

Bezug
        
Bezug
Pyramide: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:57 Di 11.04.2006
Autor: nczempin

Anschaulich, zum Überprüfen: Die Antwort muss 4 sein, da A, B und C alle 0 in z haben (also alle in der xy-Ebene liegen), D aber 4.

Bezug
        
Bezug
Pyramide: tip
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Mi 12.04.2006
Autor: protestanten_lemming

hallo,
also ich würde den normalenvektor einer ebene immer mit kreuzprodunkt ausrechnen, find ich viel einfacher und es geht auch viel schneller...
gruß lemming

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de