www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Pyramidenaufgabe
Pyramidenaufgabe < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pyramidenaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:15 Sa 25.03.2006
Autor: Bubbi

Aufgabe
ein hohlkörper von einer form einer regelmäßigen 4-seitigen pyramide mit der grundkante a und der höhe 2a wird, wenn die spitze unten ist, vollständig mit wasser gefüllt. dann wird das wasser in eine regelmäßige 6-seitige pyramide mit gleicher grundkantenlänge a und gleicher höhe 2a gegossen. wie hoch steht dann das wasser in dieser pyramide, wenn die spitze unten (oben) ist?

nun, ich hab zuerst das volumen der 1. pyramide berechnet. dann dachte ich mir, dieses mit dem der 2. pyramide gleichzusetzen und daraus die höhe zu bestimmen. aber das ergebnis scheint mir nur richtig, wenn die spitze der 2. pyramide nach oben zeigt. ich hab die ganze zeit gerätselt doch irgendwie komm ich nicht drauf. kann mir jemand helfen? wär lieb danke =)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Pyramidenaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:54 Sa 25.03.2006
Autor: leduart

Hallo Bubbi
[willkommenmr]
Wenn du die Seitenlänge der 6-eckigen Pyramoe mit x, ihre Höhe dann mit 2x ansetzest, und midem volumen der quadratischen Pyramide gleichstzest, bekommsdu die Höhe 2x für die Spitze nach unten.
Spitze nach oben: Volumen der Pyr. mit Seiten a voneinander subtrahieren, dieses neue Volumen ost wieder die (leere) Spitze, also wieder wie im 1. Teil, nur dann Füllhöhe=2a-2x
reicht das als Hinweis? sonst post doch deine Rechnung zur Kontrolle.
Gruss leduart

Bezug
        
Bezug
Pyramidenaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:07 Sa 25.03.2006
Autor: Bubbi

erstmal vielen dank. allerdings bin ich nicht ganz überzeugt mit dem ersten teil... also: wenn ich das volumen der ersten pyramide 2 drittel a hoch 3 (sorry ich weiß grad nich wie man des am pc macht)
mit dem volumen der 6-seitigen pyramide gleichsetz (einhalb a hoch 2 * wurzel 3 * h) dann bekomm ich für h den näherungswert 0,77 a raus
(a ist eine grundseitenkante!)
deswegen kann 2a nicht stimmen (nach meiner logik her ;-))

auch noch hinweiß zum ersten teil: ich will ja die höhe wissen. wenn ich schon 2a als höhe angeb, kann ich das ja gar ncih mehr rauskriegen....
entweder ich lieg völlig falsch oder irgendwas stimmt hier nicht ;-)

Bezug
        
Bezug
Pyramidenaufgabe: 2 Fehler
Status: (Antwort) fertig Status 
Datum: 16:36 Sa 25.03.2006
Autor: leduart

Hallo Bubbi
1. Grundfläche A der 6-eckigen Pyramide mit Seite x: [mm] A=6*a*a*\wurzel{3}/4 [/mm]
die Höhe ist dann nicht h sondern h=2x (in der Aufgabe steht, bei Seitenlänge a Höhe 2a. Das Volumen dann V=A*2x/3
(Du kannst nicht die seitenlänge a lassen und die Höhe h einzeln ändern, dann gäbs ne andere Pyramidenform.)
Wenn die Pyramide auf der Spitze steht, wird eine Pyramide der Seitenlänge x, Höhe 2x vom Wasser ausgefüllt.
also : [mm] $6*a*a*\wurzel{3}/4*2x/3 [/mm] =2* [mm] a^3/3$ [/mm]
x ausrechnen, 2x ist die Füllhöhe. Wenn dus Zeichnest wirds wahrscheinlich klarer!
Spitze nach oben wird ein Pyramidenstumpf gefüllt. Du kannst ausrechnen, wie groß das Volumen in der Spitze ist (siehe mein letztes post!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de