QR-Verfahren < Eigenwertprobleme < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 11:28 Mi 15.02.2006 | Autor: | Polynomy |
Hallo nochmal,
ich habe mehrere Fragen zum QR-Verfahren, weil ich absolut überhaupt nicht verstehe, was man da so macht.
Mir ist klar, dass durch $ [mm] A_k=Q_k R_k [/mm] $ und [mm] $A_{k+1}=Q_{k}R_{k}$ [/mm] eine Ähnlichkeitstrafo beschrieben wird, dass [mm] $A_k$ [/mm] gegen eine Dreiecksmatrix mit Eigenwerten auf der Diagonalen konvergiert und dass man das Ganze mit der Potenzmethode /einfache Vektoriteration zeigt (mit Startvektor [mm] $e_1$ [/mm] (so haben wir das zumindest in der VL gemacht).
Aber was genau macht mein Algorithmus? Womit fang ich an? (Wir starten in der VL meist mit Hessenberg-Matrizen, aber das soll ja jetzt egal sein)
Ich hab meine Matrix A. Wird die tatsächlich in Q und R zerlegt? Wenn ja: WIE? Mit Householder-Matrizen?
Ich verstehe auch nicht, was dann kommt. Ich hab A in QR zerlegt, danach zerlege ich das in RQ? Und dann? dann dreht man sich doch im Kreis, oder nicht?
Irgendwie ist mir das QR-Verfahren suspekt. Wie komme ich auf mein [mm] $A_k$, [/mm] an dem ich die Eigenwerte direkt ablesen kann?
Es wär super, wenn mir das jemand (relativ einfach) erklären könnte. Im Internet finde ich immer nur das Gleiche mit $ [mm] A_k=Q_k R_k [/mm] $ und [mm] $A_{k+1}=Q_{k}R_{k}$, [/mm] aber wie genau man da praktisch vorgeht, steht nirgends.
Gibt es eigentlich einen Unterschied zwischen einer Diagonalmatrix und der Schurzerlegung? Soweit ich weiß, stehen bei der Schur-Zerlegung die EWe auf der Hauptdiagonalen??!
Danke.
|
|
|
|
Hallo!
Also, ich kann dir lange nicht alles beantworten, aber vllt schon mal ein paar Ansätze:
> Hallo nochmal,
> ich habe mehrere Fragen zum QR-Verfahren, weil ich absolut
> überhaupt nicht verstehe, was man da so macht.
> Mir ist klar, dass durch [mm]A_k=Q_k R_k[/mm] und
> [mm]A_{k+1}=Q_{k}R_{k}[/mm] eine Ähnlichkeitstrafo beschrieben wird,
> dass [mm]A_k[/mm] gegen eine Dreiecksmatrix mit Eigenwerten auf der
> Diagonalen konvergiert und dass man das Ganze mit der
> Potenzmethode /einfache Vektoriteration zeigt (mit
> Startvektor [mm]e_1[/mm] (so haben wir das zumindest in der VL
> gemacht).
>
> Aber was genau macht mein Algorithmus? Womit fang ich an?
> (Wir starten in der VL meist mit Hessenberg-Matrizen, aber
> das soll ja jetzt egal sein)
>
> Ich hab meine Matrix A. Wird die tatsächlich in Q und R
> zerlegt? Wenn ja: WIE? Mit Householder-Matrizen?
Wir haben meistens eine QR-Zerlegung mit dem Householder Verfahren gemacht. Da rechnet man dann ein bisschen rum, und das erste "Ergebnis", das man bekommt, ist eine Matrix, bei der in der ersten Spalte nur noch der erste Eintrag von Null verschieden ist. Dann rechnet man mit der Teilmatrix weiter, die aus der gerade erhaltenen entsteht, indem man die erste Zeile und die erste Spalte einfach weglässt. Dann erhält man wieder eine Matrix, bei der in der ersten Spalte nur noch der erste Eintrag von Null verschieden ist bzw. wenn man dann die komplette Matrix nimmt (also die gestrichene Zeile und Spalte wieder "dazu tut"), hat man schon den Anfang einer rechten oberen Dreiecksmatrix. Und so geht das dann weiter, bis man die R-Matrix komplett hat. Und Q erhält man dann auch noch durch eine Multiplikation.
> Ich verstehe auch nicht, was dann kommt. Ich hab A in QR
> zerlegt, danach zerlege ich das in RQ? Und dann? dann dreht
> man sich doch im Kreis, oder nicht?
Mmh - in RQ habe ich noch keine Matrix zerlegt. Wenn man ein LGS Ax=b lösen möchte und man hat die Matrix A in QR zerlegt, so kann man das LGS ja schreiben als: QRx=b. Und das kann man dann aufteilen in Qy=b und Rx=y. Damit muss man dann nur noch zwei "sehr einfache" LGS lösen - deswegen macht man das Ganze mit der QR-Zerlegung.
> Irgendwie ist mir das QR-Verfahren suspekt. Wie komme ich
> auf mein [mm]A_k[/mm], an dem ich die Eigenwerte direkt ablesen
> kann?
>
> Es wär super, wenn mir das jemand (relativ einfach)
> erklären könnte. Im Internet finde ich immer nur das
> Gleiche mit [mm]A_k=Q_k R_k[/mm] und [mm]A_{k+1}=Q_{k}R_{k}[/mm], aber wie
> genau man da praktisch vorgeht, steht nirgends.
Willst du einen Algorithmus haben, wie man das berechnet? Falls ihn dir kein anderer hier gibt, schick mir doch bitte eine PN, dann suche ich dir noch was aus meinen Sachen raus (habe nämlich gerade vor zwei Wochen meine Klausur darüber geschrieben, aber auswendig weiß ich das gerade trotzdem nicht mehr ). Und bitte sag direkt, für wann du das brauchst, da ich auch noch recht viel zu tun habe, und wenn es nicht so dringend ist, mache ich es vllt erst am WE oder nächste Woche.
Von dem Rest habe ich so eher mal keine Ahnung - bestimmt hilft dir noch wer anders.
Viele Grüße
Bastiane
P.S.: Sind "QR-Verfahren" und "QR-Zerlegung" etwas anderes? Dann habe ich hier wohl nichts Hilfreiches beschrieben... Wir haben uns nämlich nur mit der QR-Zerlegung beschäftigt...
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:49 Do 16.02.2006 | Autor: | Polynomy |
Hallo Bastiane,
danke, du hast mir schonmal sehr geholfen, dass man das mit Householder macht. QR-Verfahren und Zerlegung haben schon was miteinander zu tun: man macht erst eine QR-Zerlegung, und damit berechnet man dann die Eigenwerte (QR-Verfahren), aber ich bin da leider kein Experte.
Du musst nicht extra was aus deinen Unterlagen suchen, danke! Ich such einfach nochmal zum x-ten Mal im Internet. Irgendwo wird es bestimmt auch für Numerik-Laien wie mich simpel erklärt!
Danke!!
|
|
|
|