QR-Zerlegung < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:06 Mo 13.04.2009 | Autor: | oby |
Aufgabe | Zeigen Sie, dass die dünne QR-Zerlegung A = [mm] Q_1R_1 [/mm] eindeutig ist, falls A aus [mm] R^{m;n} [/mm] (m > n) vollen
Spaltenrang hat. [mm] Q_1 \in R^{m;n} [/mm] hat dabei orthonormale Spalten und R1 [mm] \in R^{n;n} [/mm] ist obere Dreiecksmatrix.
Desweiteren geht [mm] R_1 [/mm] aus dem unteren Dreiecksfaktor G der Cholesky-Faktorisierung von [mm] A^T [/mm] A durch die Identität R = [mm] G^T [/mm] hervor. |
Hallo Matheraum.
Hab hier eine Aufgabe zur QR-Zerlegung als Hausaufgabe auf. Hab mich inzwischen schon mit der QR-Zerlegung "angefreundet" und weiss zumindest, dass ich die über Gram-Schmidt herauskriegen kann. Bei dieser Aufgabe hab ich aber so wirklich meine Probleme:
1.Was ist eine "dünne" QR-Zerlegung?
2.Ist eine QR-Zerlegung nicht sowieso immer eindeutig (ich meine, das funktioneiert ja immer nach nem ganz einfachen Eindeutigen(!) Algorithmus) Also es kann ja da nie passieren, dass ich zwei Ergebnisse rausbekomme...
3.Ich hab noch nie was von ner Cholesky-Faktorisierung gehört.
4.Im insgesamten weiss ich also auch gar nicht wo und wie ich da ansetzen soll, dacht mir das könnte was mit dem Zusammenhang "voller Spaltenrang"<-> "linear unabhängige Spaltenvektoren" zutun haben, aber das ist ja eh klar, dann man ja ne Orthonormalbasis für Q rauskriegt...
Ich hoffe es kent sich jemand diesbezüglich aus und kann mir weiterhelfen oder zumindest beim Ansatz ein paar Ideen liefern. Vielen Dank schonmal!
MfG OBy
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|