www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Q, GL(2) und diagonale
Q, GL(2) und diagonale < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Q, GL(2) und diagonale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:52 Mo 07.03.2011
Autor: kushkush

Aufgabe
Sei [mm] $A=\vektor{3 & -2 \\ 4 & -3}$ [/mm]

a) Finde $Q$ in $ GL(2) $ und diagonale $ [mm] \Lambda [/mm] $ mit [mm] $A=Q\Lambda Q^{-1}$ [/mm]
b) berechne [mm] $A^{2011}$ [/mm]

Hallo,

Das GL(2) bedeutet allgemeine lineare Gruppe vom Grad 2 ?

Q ist die Matrix mit den Basisvektoren von A als Eintrag, [mm] Q^{-1} [/mm] die Inverse davon, was ist dann das [mm] $\Lambda$? [/mm]


Ich habe diese Frage in keinem anderen Forum gestellt.


Danke und Gruss

kushkush

        
Bezug
Q, GL(2) und diagonale: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 Mo 07.03.2011
Autor: kamaleonti

Hallo,
> Sei [mm]A=\vektor{3 & -2 \\ 4 & -3}[/mm]
>
> a) Finde [mm]Q[/mm] in [mm]GL(2)[/mm] und diagonale [mm]\Lambda[/mm] mit [mm]A=Q\Lambda Q^{-1}[/mm]
>  
> b) berechne [mm]A^{2011}[/mm]
>  Hallo,
>  
> Das GL(2) bedeutet allgemeine lineare Gruppe vom Grad 2 ?

[ok]

>  
> Q ist die Matrix mit den Basisvektoren von A als Eintrag,
> [mm]Q^{-1}[/mm] die Inverse davon,

Nicht Basisvektoren von A, sondern Basiselemente aus den Eigenräumen der Matrix A.

> was ist dann das [mm]\Lambda[/mm]?

Die Diagonalmatrix. Es gilt auch [mm] \Lambda=Q^{-1}AQ. [/mm]

>
>
> Ich habe diese Frage in keinem anderen Forum gestellt.
>
>
> Danke und Gruss
>  
> kushkush

LG

Bezug
                
Bezug
Q, GL(2) und diagonale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:48 Di 08.03.2011
Autor: kushkush

Hallo,


Eigenwerte sind [mm] $\lambda_{1/2}=\pm [/mm] 1$

Eigenvektoren sind [mm] $\vektor{1 \\ 1}$ [/mm] und [mm] $\vektor{1 \\ 2 }$ [/mm]

Also ist Q: [mm] $\vektor{1 & 1 \\ 1 & 2}$ [/mm]

und [mm] $Q^{-1}:\vektor{2&-1 \\ -1 & 1}$ [/mm]


also ist $ [mm] \Lambda=QAQ^{-1}=\vektor{6&2 \\ -4&-6}$ [/mm]

und [mm] $A^{2011}=QA^{2011}Q^{-1}=\vektor{2\cdot 6^{2011} & - (2)^{2011} \\ - (-4)^{2011} & 2\cdot (-6)^{2011}}$ [/mm] ?


Danke für die Hilfe.




Gruss

kushkush

Bezug
                        
Bezug
Q, GL(2) und diagonale: Antwort
Status: (Antwort) fertig Status 
Datum: 12:18 Di 08.03.2011
Autor: kamaleonti

Hallo,
> Hallo,
>  
>
> Eigenwerte sind [mm]\lambda_{1/2}=\pm 1[/mm]

[ok]

>
> Eigenvektoren sind [mm]\vektor{1 \\ 1}[/mm] und [mm]\vektor{1 \\ 2 }[/mm] [ok]
>
> Also ist Q: [mm]\vektor{1 & 1 \\ 1 & 2}[/mm]
>
> und [mm]Q^{-1}:\vektor{2&-1 \\ -1 & 1}[/mm]

Bis hierhin ist alles OK

>
>
> also ist [mm]\Lambda=QAQ^{-1}=\vektor{6&2 \\ -4&-6}[/mm]

Das kann keine Diagonalmatrix sein. Es müssen alle Einträge außerhalb der Hauptdiagonale Null sein. Eigentlich brauchst du hier gar nicht rechnen, sondern aufgrund der Wahl von Q folgt sofort [mm] \Lambda=\vektor{1&0 \\ 0 & -1} [/mm]
Außerdem gilt [mm] \Lambda=Q^{-1}AQ [/mm] ;-)

>  
> und [mm]A^{2011}=QA^{2011}Q^{-1}=\vektor{2\cdot 6^{2011} & - (2)^{2011} \\ - (-4)^{2011} & 2\cdot (-6)^{2011}}[/mm]
> ?

Hier musst du dann einsetzen [mm] A^n=Q\Lambda^n Q^{-1} [/mm]

>
>
> Danke für die Hilfe.
>  
> Gruss
>  
> kushkush

LG

Bezug
                                
Bezug
Q, GL(2) und diagonale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:49 Di 08.03.2011
Autor: kushkush

Hallo,


ich komme auf [mm] $A^{2011}=\vektor{3 & -2 \\ 4 & -3}$ [/mm]


stimmt das?


Danke dir!



Gruss

kushkush

Bezug
                                        
Bezug
Q, GL(2) und diagonale: Antwort
Status: (Antwort) fertig Status 
Datum: 13:12 Di 08.03.2011
Autor: kamaleonti

Hi,
> ich komme auf [mm]A^{2011}=\vektor{3 & -2 \\ 4 & -3}[/mm]
> stimmt das?

Ja.

Gruß


Bezug
                                        
Bezug
Q, GL(2) und diagonale: Antwort
Status: (Antwort) fertig Status 
Datum: 13:16 Di 08.03.2011
Autor: fred97

Weitere Möglichkeit:

Entweder man sieht, dass [mm] A^2=E [/mm]  (= Einheitsmatrix) ist, oder man bemüht den Satz von Cayley-Hamilton. Es folgt:

           [mm] A^{2n}=E [/mm]  und [mm] A^{2n+1}=A [/mm]   (n [mm] \in \IN_0) [/mm]

FRED

Bezug
                                                
Bezug
Q, GL(2) und diagonale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:10 Di 08.03.2011
Autor: kushkush

Hallo kamaleonti und fred,



Danke!!




Gruss

kushkush

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de