www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Quadr. Gleichungen
Quadr. Gleichungen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadr. Gleichungen: Erklärung p und q
Status: (Frage) beantwortet Status 
Datum: 20:52 Mi 22.11.2006
Autor: Janine10b

Aufgabe
[mm] x^2+8x=65 [/mm]

Hallo,

[mm] x^2+8x-65=0 [/mm] hier hat unser Leher aufgehört und p und q bestimmt, also p=8 und q=-65, so weit so gut, nur wie kommt er dann darauf zu schreiben:
[mm] D=4^2+65=81>0 [/mm]
Dann gibt es noch die Formel x1,2=-p/2 [mm] +/-\wurzel{D} [/mm]

Wo ist mein q hin?

Bitte helft. Grüße Janine

        
Bezug
Quadr. Gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:03 Mi 22.11.2006
Autor: gore

Hi,

das D heißt Diskriminante und ist nichts weiter als der Ausruck unter der Wurzel, also das: [mm] D=\bruch{p^2}{4}-q. [/mm] Daher ist [mm] x_1, x_2= -\bruch{p}{2}\pm\wurzel{\bruch{p^2}{4}-q} [/mm] genau das gleiche wie [mm] x_1,x_2=-\bruch{p}{2}\pm\wurzel{D}. [/mm]

In deinem Fall heißt das dann:

[mm] D=\bruch{8^2}{4}+65=16+65=81 [/mm]

Dein q ist nach wie vor die -65, aber wenn du das einsetzt gilt ja: [mm] D=\bruch{8^2}{4}-(-65)=\bruch{8^2}{4}+65 [/mm]

Da die Zahl unter der Wurzel größer oder gleich 0 sein muss, testet man mit diesem Verfahren, ob die Wurzel definiert ist. In deinem Fall ist sie das natürlich, denn [mm] \wurzel{81}=9. [/mm]

=)


Bezug
        
Bezug
Quadr. Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:12 Mi 22.11.2006
Autor: Steffi21

Hallo,
Du sollst eine quadratische Gleichung lösen. Lösen wir zuerst x+5=17, als x=12. Eine quadratische Gleichung hat die Normalform [mm] x^{2}+px+q=0, [/mm] der Faktor vor [mm] x^{2} [/mm] ist 1, die dazugehörige Lösungsformel lautet [mm] x_1_2=-\bruch{p}{2}\pm\wurzel{\bruch{p^{2}}{4}-q}, [/mm] der Ausdruck unter der Wurzel heiß Diskriminante (D), Du weißt sicherlich, aus negativen Zahlen kann man keine Wurzel ziehen, es gibt drei Fälle:
1. D<0, es gibt keine (reelle) Lösung
2. D=0, es gibt eine  (reelle) Lösung
3. D>0, es gibt zwei  (reelle) Lösungen

wolen wir jetzt rechnen, p=8, q=-65

[mm] x_1_2=-\bruch{8}{2}\pm\wurzel{\bruch{8^{2}}{4}-(-65)} [/mm]
[mm] x_1_2=-4\pm\wurzel{16+65} [/mm]
[mm] x_1_2=-4\pm\wurzel{81} [/mm]
[mm] x_1_2=-4\pm9 [/mm]
[mm] x_1=-4+9=5 [/mm]
[mm] x_2=-4-9=-13 [/mm]

Jetzt kannst Du für beide Lösungen die Probe machen, Du erhälst eine wahre Aussage, viel Spass beim Rechnen
Steffi

Bezug
                
Bezug
Quadr. Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:26 Mi 22.11.2006
Autor: Janine10b

Ok danke!

Heißt das, in der Wurzel gibt es kein Vorzeichenwechsel vor dem Bruch mit [mm] p^2 [/mm] weil das sowieso immer positiv wird? Nur vor dem q muss ich das Vorzeichen beachten?

Bezug
                        
Bezug
Quadr. Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 Mi 22.11.2006
Autor: Steffi21

so ist es!!!

Bezug
                
Bezug
Quadr. Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:30 Mi 22.11.2006
Autor: Janine10b

Sorry, Nachsatz:

nehmen wir an, in der Wurzel steht nur eine -9, was dann -3 ergeben würde und vor der Klammer steht nun zB 4 +/-, dann müsste ich doch rechnen:

4 + (-3) = 1
und
4 - (-3) = 7

ja?

Bezug
                        
Bezug
Quadr. Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:35 Mi 22.11.2006
Autor: MontBlanc

Hi,

das stimmt so leider nicht, denn die wurzel aus -9 ist auf keinen fall -3, denn [mm] -3*-3=9\not=-9. [/mm]

Wenn der Ausdruck unter der Wurzel negativ ist, wie Steffi schon sagte, dann gibt es keine reele Lösung, höchstens eine Lösung in der Menge der komplexen Zahlen [mm] \IC, [/mm] wenn ich mich nicht irre, denn nur dann ist es möglich aus negativen Zahlen die Wurzel zu ziehen. Die [mm] \wurzel{-1} [/mm] ist übrigens i, das ist so definiert.

Bis denn

Bezug
                                
Bezug
Quadr. Gleichungen: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 21:41 Mi 22.11.2006
Autor: mathemak

Hallo!

> Hi,
>  
> das stimmt so leider nicht, denn die wurzel aus -9 ist auf
> keinen fall -3, denn [mm]-3*-3=9\not=-9.[/mm]

$-3 [mm] \cdot [/mm] (-3) [mm] \neq [/mm] 9$

Da muss eine Klammer um die zweite $-3$!

>  
> Wenn der Ausdruck unter der Wurzel negativ ist, wie Steffi
> schon sagte, dann gibt es keine reele Lösung, höchstens
> eine Lösung in der Menge der komplexen Zahlen [mm]\IC,[/mm] wenn ich

komplexe Lösungen treten immer paarweise auf. Die komplexe und die konjugiert komplexe dazu.

> mich nicht irre, denn nur dann ist es möglich aus negativen
> Zahlen die Wurzel zu ziehen. Die [mm]\wurzel{-1}[/mm] ist übrigens
> i, das ist so definiert.

definiert ist [mm] $i^2 [/mm] = -1$ (ist präziser als Dein Vorschlag, der aber auch in Büchern zu finden ist)

Gruß

mathemak

Bezug
                        
Bezug
Quadr. Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:46 Mi 22.11.2006
Autor: Steffi21

Hallo, (arme Janine), ich habe gelesen, Du bist 9. Klasse ignoriere die Hinweise, was komplexe Zahlen betrifft. Merke Dir aus negativen Zahlen kannst Du, da in 9. Klasse, keine Wurzel ziehen, die Diskriminante (das war der Ausdruck unter der Wurzel) ist somit negativ, also hat Deine quadratische Gleichung keine Lösung!
Steffi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de