www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Quadrate
Quadrate < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadrate: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:17 Mo 03.10.2005
Autor: Rio

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo

folgendes Problem :

Gegeben ist eine beliebige ganze Zahl. Nehmen wir die 16.
Diese Zahl soll nun zu einem ganzzahligen Quadrat addiert werden. Einem Quadrat wie der Zahl 9. Die Bedingung ist, dass die Summe beider ebenfalls ein ganzzahliges Quadrat ist; hier 25.

16 + 9 = 25

Ist jemandem eine Formel oder ein Weg bekannt eines der Quadrate zu ermitteln? (Stupides Durchprobieren zählt nicht) Wichtig ist außerdem, dass beide Quadrate die kleinst möglichen sind.

Grüße

        
Bezug
Quadrate: Pythagoräische Tripel
Status: (Antwort) fertig Status 
Datum: 18:31 Mo 03.10.2005
Autor: Bastiane

Hallo Rio und [willkommenmr]!

> Gegeben ist eine beliebige ganze Zahl. Nehmen wir die 16.
>  Diese Zahl soll nun zu einem ganzzahligen Quadrat addiert
> werden. Einem Quadrat wie der Zahl 9. Die Bedingung ist,
> dass die Summe beider ebenfalls ein ganzzahliges Quadrat
> ist; hier 25.
>  
> 16 + 9 = 25
>  
> Ist jemandem eine Formel oder ein Weg bekannt eines der
> Quadrate zu ermitteln? (Stupides Durchprobieren zählt
> nicht) Wichtig ist außerdem, dass beide Quadrate die
> kleinst möglichen sind.

Du meinst wohl die []pythagoräischen Tripel. Habe mich noch nicht damit befasst, aber vielleicht hilft dir der Link ja.

Viele Grüße
Bastiane
[cap]


Bezug
        
Bezug
Quadrate: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Mo 03.10.2005
Autor: holy_diver_80

Hallo Rio,

Falls die gegebene Zahl eine Restklasse 2 modulo 4 ist, kann es solche Quadrate nicht geben.

Wir wollen: [mm] $m+n^2=p^2$ $\Leftrightarrow$ $p^2-n^2=(p+n)*(p-n)=m$ [/mm]
Sei nun $m [mm] \equiv [/mm] 2 [mm] \mod [/mm] 4$.

Dann gilt: $(p+n)*(p-n) [mm] \equiv [/mm] 2 [mm] \mod [/mm] 4$
Einer der beiden Faktoren muss gerade sein, also ist auch der andere gerade, und die linke Seite eine Restklasse 0 modulo 4.

In diesem Fall ist die Gleichung unlösbar.
Ansonsten ist es zielführend
n=l und
p=l+1 bzw p=l+2
anzusetzen

Liebe Grüße,
Holy Diver

Bezug
                
Bezug
Quadrate: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:13 Di 04.10.2005
Autor: Rio

Hallo Bastiane und holy_diver_80

Hab mir das mit dem "Pyth. Tripel" mal angeschaut. Ok. Danke erstmal.

Hmm, allerdings löst das mein Problem nicht (natürlich zieh' ich auch in Betracht das Thema nicht wirklich durchdrungen zu haben). Vermutlich hast Du mir das Tripel vorgeschlagen, weil ich in meinem Beispiel die 16 [mm] (4^2) [/mm] verwendet habe. Nun gut. Neuer Versuch?

- Ich habe nur eine Zahl
- Sie ist immer gerade & ganzzahlig.
- Sie ist kein Quadrat.
- Sie darf nicht quadriert werden.

Gesucht ist ein mgl. kleines Quadrat, welches in der Summe mit besagter Zahl wiederum ein Quadrat zur Folge hat.

Die 16 war ein blödes Beispiel ;). Nehmen wir die 60. Diese Zahl ist bekannt. Die beiden Quadrate nicht.

60 + [mm] 2^2 [/mm] = [mm] 8^2 [/mm]

Wie bestimme ich jetzt [mm] 2^2 [/mm] und [mm] 8^2 [/mm] ?

holy_diver_80, ich kann Dir momentan nicht ganz folgen. Restklasse??, muss später mal nachschauen. mod ist mir ein Begriff. Alles was ich weiß ist, dass diese Quadrate für die oben genannte Definition der Zahl existieren. Versprochen.

So ihr beiden, ich hoffe die Sachlage etwas akkurater, wenngleich auch nicht mit den euch geläufigen mathematischen Formelzeichen, "dargestellt" zu haben.

Grüße

Bezug
                        
Bezug
Quadrate: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:50 Di 04.10.2005
Autor: Rio

..ups, hab noch eine Kleinigkeit vergessen. Die Zahl muss außerdem restlos durch vier teilbar sein. So, haben wirs jetzt? Mein Güte. -:)

Bezug
                                
Bezug
Quadrate: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:17 Di 04.10.2005
Autor: holy_diver_80

Hallo Rio,

Verzeih mir, dass ich Dich in meinem ersten Post überfordert habe. Das hier ist jetzt einfacher.

Wenn die Zahl restlos durch 4 teilbar sein muss, gibt es solche Zahlen. Denn:

Sei m eine durch 4 teilbare Zahl, also $m=4*n$. Finde Zahlen a und b so, dass
[mm] $a^2 [/mm] + m = [mm] b^2$ [/mm]
Setze b=a+2 und forme um
[mm] $(a+2)^2 [/mm] - [mm] a^2 [/mm] = m$ [mm] $\Rightarrow \ldots \Rightarrow$ $a=\bruch{m}{4}-1$ [/mm]

Also gibt es solche Zahlen. (Für ungerade Zahlen m funktioniert übrigens der Ansatz b=a+1. Nur bei geraden Zahlen, die nicht durch 4 gehen, funktioniert die Sache nicht. Das steht in meinem ersten Post.)

Auf diese Weise erhält man aber nicht die kleinsten solchen Zahlen. Für m=40, liefert diese Methode a=9 und b=11. Für a=3 und b=7 geht die Sache aber auch schon gut.

ABER: Für alle m kennen wir jetzt ein Beispiel. Größer können die minimalen Zahlen nicht sein. Daher muss man für ein m nur noch die endlich vielen kleineren Zahlen überprüfen. Das ist nicht elegant, aber was besseres wird mir heute nicht mehr einfallen.

Liebe Grüße,
Holy Diver

Bezug
                        
Bezug
Quadrate: Binomische Formel
Status: (Antwort) fertig Status 
Datum: 02:14 Di 04.10.2005
Autor: leduart

Hallo
[mm] (a+b)*(a-b)=a^{2}-b^{2} [/mm]
Zerleg deine durch 4 teilbare Zahl in das Produkt aus zwei geraden Zahlen g1*g2, mit g1>g2, das kleins mögliche Paar. dann hast du a+b=g1;a-b=g2 und kannst a und b bestimmen .und es gilt :
[mm] g1*g2+b^{2}=a^{2} [/mm]
Beispiel 60=6*10   a+b=10 a-b=6   2a=16, 2b=4. oder 80=8*10    2a=18, 2b=2
Gruss leduart

Bezug
                                
Bezug
Quadrate: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:57 Di 04.10.2005
Autor: Rio

Hallo holy diver!

Papperlapapp. Du hast mich nicht überfordert. Du hast nur meinen Kenntnisstand überschritten. Macht nichts. Lernen macht Spaß.

Hab das jetzt alles soweit verstanden. Doch wie kann man für ein "m" nur noch die endlich vielen kleineren Zahlen überprüfen. Kannst Du das bitte etwas konkretisieren.


Hallo leduart!

Rekapitulation:

Ich zerlege (wie auch immer) meine Zahl in das kleinst mögliche Paar gerader Zahlen. In meinem Beispiel mit der 60 hast Du die 6*10 verwendet. Warum nicht 2*30 oder 3*20 ?
Wenn Du damit meinst, dass sie möglichst nahe beieinander liegen müssen, dann habe ich nur noch eine Frage an Dich: Wie zerlege ich in diese beiden Zahlen ?

Danke für eure Zeit & Geduld

mehrere Grüße, Rio

Bezug
                                        
Bezug
Quadrate: Teiler
Status: (Antwort) fertig Status 
Datum: 22:25 Di 04.10.2005
Autor: MathePower

Hallo Rio,


> Rekapitulation:
>  
> Ich zerlege (wie auch immer) meine Zahl in das kleinst
> mögliche Paar gerader Zahlen. In meinem Beispiel mit der 60
> hast Du die 6*10 verwendet. Warum nicht 2*30 oder 3*20 ?
>  Wenn Du damit meinst, dass sie möglichst nahe beieinander
> liegen müssen, dann habe ich nur noch eine Frage an Dich:
> Wie zerlege ich in diese beiden Zahlen ?

die Gleichung  lautet:

[mm]z\; + \;n^2 \; = \;m^2 [/mm]

Diese Gleichung wird nun nach z umgeformt:

[mm]z\; = \;m^2 \; - \;n^2 \; = \;\left( {m\; - \;n} \right)\;\left( {m\; + \;n} \right)[/mm]

z ist also ein Produkt von zwei Zahlen [mm]m\;-\;n[/mm] und [mm]m\;+\;n[/mm].

Hierbei durchlaufen die beiden Zahlen alle Teiler von z.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de