www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Quadratische Ergänzung
Quadratische Ergänzung < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Ergänzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:43 Di 07.07.2009
Autor: pippilangstrumpf

Aufgabe
[mm] 3\*x_{1}^{2} [/mm] + [mm] 2\*x_{2}^{2} [/mm] + [mm] 3\*x_{3}^{2}+8\*x_{1}x_{3}=1 [/mm]

[mm] 3\*x_{1}^{2} [/mm] + [mm] 2\*x_{2}^{2} [/mm] + [mm] 3\*x_{3}^{2}+8\*x_{1}x_{3}=1 [/mm]
Ich soll hier quadratische Ergänzung durchführen...

Jetzt würde ich euch um eure Hilfe bitten!

Zuerst würde ich [mm] 2\*x_{2}^{2} [/mm] stehen lassen, da ich hier bereits ein Quadrat habe, richtig?
Dann würde ich mich auf [mm] 3\*x_{1}^{2} [/mm] und [mm] 3\*x_{3}^{2}+8\*x_{1}x_{3}=1 [/mm] stürzen.
Die 1 würde ich auf die linke Seite bringen (Term = 0 setzen).

Dann bleibt mir noch übrig:
[mm] 3\*x_{1}^{2}+ 3\*x_{3}^{2}+8\*x_{1}x_{3}-1 [/mm] = 0 [mm] (2\*x_{2}^{2} [/mm] lasse ich jetzt für die Nebenrechnung weg!!!)

[mm] 3\*x_{1}^{2}+ 3\*x_{3}^{2}+8\*x_{1}x_{3}-1 [/mm] = 0
Wer kann mir hier weiter helfen?
Klammere ich die 3 aus?
3 [mm] (x_{1}^{2}+ x_{3}^{2}+\bruch{8}{3}x_{1}x_{3})-1=0 [/mm]

Dann lasse ich die 3 stehen und mache ein Binom:
3 [mm] (x_{1}+\bruch{4}{3} x_{3})x^{2}-1-\bruch{48}{9}=0 [/mm]

Bin ich soweit richtig?

Besten Dank, Gruß Pippi:-;





        
Bezug
Quadratische Ergänzung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:30 Di 07.07.2009
Autor: Al-Chwarizmi


> [mm]3\*x_{1}^{2}+2\*x_{2}^{2}+3\*x_{3}^{2}+8\*x_{1}x_{3}=1[/mm]

>  Ich soll hier quadratische Ergänzung durchführen...
>  

So wie es nach deiner früheren Aufgabe
aussieht, geht es wohl wieder darum,
des gemischte Glied  [mm] 8*x_1*x_3 [/mm] irgendwie
zum Verschwinden zu bringen, um dann
eine Summe von Quadraten zu bekommen.
Dies kann man allerdings auf verschiedene
Arten tun, die Aufgabe ist also nicht ein-
deutig gestellt
!

  

> Zuerst würde ich [mm]2\*x_{2}^{2}[/mm] stehen lassen, da ich hier
> bereits ein Quadrat habe, richtig?   [ok]

>  Dann würde ich mich auf [mm]3\*x_{1}^{2}[/mm] und
> [mm]3\*x_{3}^{2}+8\*x_{1}x_{3}=1[/mm] stürzen.

> .....  
> Dann bleibt mir noch übrig:
>  [mm]3\*x_{1}^{2}+ 3\*x_{3}^{2}+8\*x_{1}x_{3}-1[/mm] = 0

> [mm](2\*x_{2}^{2}[/mm] lasse ich jetzt für die Nebenrechnung
> weg!!!)
>  
> [mm]3\*x_{1}^{2}+ 3\*x_{3}^{2}+8\*x_{1}x_{3}-1[/mm] = 0

>  Wer kann mir hier weiter helfen?
>  Klammere ich die 3 aus?

> 3 [mm](x_{1}^{2}+ x_{3}^{2}+\bruch{8}{3}x_{1}x_{3})-1=0[/mm]

Lass lieber z.B. die [mm] 3*x_3^2 [/mm] vorerst aus dem Spiel,
also:

       $\ [mm] 3*(x_1^2+\bruch{8}{3}x_1x_3+.....)-......+3x_3^2-1=0$ [/mm]
  

> Dann lasse ich die 3 stehen und mache ein Binom:
>  3 [mm](x_{1}+\bruch{4}{3} x_{3})x^{2}-1-\bruch{48}{9}=0[/mm]    [notok]

Da wo ich oben die Pünktchen gesetzt habe,
kommt die Ergänzung hin:

       $\ [mm] 3*(x_1^2+\bruch{8}{3}x_1x_3\red{+\bruch{16}{9}x_3^2})\blue{-\bruch{16}{3}x_3^2}+3x_3^2-1=0$ [/mm]

       $\ [mm] 3*\left(x_1+\bruch{4}{3}x_3\right)^2-\bruch{7}{3}x_3^2-1=0$ [/mm]

Dann natürlich das Glied mit [mm] x_2^2 [/mm] wieder dazu
und du hast deinen Term ohne gemischte Glieder.
Da im gegebenen Term [mm] x_1 [/mm] und [mm] x_3 [/mm] genau symmetrisch
vorkommen, wäre jedoch statt der Lösung

       $\ [mm] 3*\left(x_1+\bruch{4}{3}x_3\right)^2+2x_2^2-\bruch{7}{3}x_3^2=1$ [/mm]

ebensogut möglich:

       $\ [mm] 3*\left(x_3+\bruch{4}{3}x_1\right)^2+2x_2^2-\bruch{7}{3}x_1^2=1$ [/mm]

Es gäbe noch (unendlich viele !) andere mögliche
Lösungen, falls nicht noch eine Zusatzbedingung
zu erfüllen ist.


LG     Al-Chw.





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de