www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Quadratische Gleichung
Quadratische Gleichung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Gleichung: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 16:51 So 01.05.2005
Autor: AnKaSe

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Bestimme die Lösungsmenge der folgenden Gleichung mit Hilfe der quadratischen Ergänzung und gib die Linearfaktordarstellung an:

[mm] 2x^2 [/mm] - 4x + 10 = 0

Folgenden Lösungsansatz habe ich gewählt:

[mm] 2x^2 [/mm] - 4x = -10 | :2
[mm] x^2 [/mm] - 2x = -5 | [mm] (\bruch{2}{2})^2 [/mm] = 1
[mm] x^2 [/mm] -2x + 1 = -5 + 1
[mm] (x-1)^2 [/mm] = -4 | +4
[mm] (x-1)^2 [/mm] + 4 = 0

Ist der Ansatz bis dahin richtig?
Aber wie Geht es weiter?


        
Bezug
Quadratische Gleichung: Erläuterung
Status: (Antwort) fertig Status 
Datum: 17:04 So 01.05.2005
Autor: Loddar

Hallo AnKaSe!

Auch Dir hier ein herzliches [willkommenmr] !!


> [mm]2x^2[/mm] - 4x + 10 = 0
>  
> Folgenden Lösungsansatz habe ich gewählt:
>  
> [mm]2x^2[/mm] - 4x = -10 | :2
> [mm]x^2[/mm] - 2x = -5 | [mm](\bruch{2}{2})^2[/mm] = 1
> [mm]x^2[/mm] -2x + 1 = -5 + 1
> [mm](x-1)^2[/mm] = -4 | +4
> [mm](x-1)^2[/mm] + 4 = 0

[daumenhoch] Alles richtig gemacht!

Nun würden wir ja versuchen, über den Ansatz der 3. binomischen Formel den Ausdruck auf der linken Seite in seine Linearfaktoranteile zu zerlegen.

3. binomische Formel:  [mm] $(a^2 \red{-} b^2) [/mm] \ = \ (a+b)*(a-b)$

Du siehst, das ganze funktioniert nur, wenn dort eine negative Zahl steht. Für Deine Aufgabe mit [mm] $\red{+} [/mm] \ 4$ gibt es demnach keine Lösung.

Die Lösungsmenge ist also in diesem Falle leer.


Das hätte man auch schon in der vorletzten Zeile erkennen können, da dort auf der einen Seite ein Quadrat [mm] $(...)^{\red{2}}$ [/mm] steht und auf der anderen Seite eine negative Zahl mit [mm] $\red{-} [/mm] 4$.

[aufgemerkt] Ein Quadrat ist aber niemals negativ!


Nun alle Klarheiten beseitigt?


Gruß
Loddar


Bezug
        
Bezug
Quadratische Gleichung: Hinweis auf MatheBank
Status: (Antwort) fertig Status 
Datum: 20:49 So 01.05.2005
Autor: informix

Hallo AnKaSe,
auch von mir ein [willkommenmr].
Wir freuen uns auch immer über eine nette Anrede .. ;-)

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Bestimme die Lösungsmenge der folgenden Gleichung mit Hilfe
> der quadratischen Ergänzung und gib die
> Linearfaktordarstellung an:
>  
> [mm]2x^2[/mm] - 4x + 10 = 0
>  
> Folgenden Lösungsansatz habe ich gewählt:
>  
> [mm]2x^2[/mm] - 4x = -10 | :2
>  [mm]x^2[/mm] - 2x = -5 | [mm](\bruch{2}{2})^2[/mm] = 1
>  [mm]x^2[/mm] -2x + 1 = -5 + 1
>  [mm](x-1)^2[/mm] = -4 | +4
>  [mm](x-1)^2[/mm] + 4 = 0
>  
> Ist der Ansatz bis dahin richtig?
>  Aber wie Geht es weiter?
>  

An der letzten Gleichung erkennst du schon, dass sie nicht lösbar sein kann, weil [mm] $(x-1)^2 \ne [/mm] -4$ für alle $x [mm] \in \IR$ [/mm] gilt.

Wenn es eine Lösunge gäbe, könntest du mit dem MBSatz von Vieta die Lösungen als Linearfaktoren finden.
Schau mal in unsere MBMathebank, da findest du noch mehr Nützliches!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de