www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Quadratische Gleichungen mit 2 Variablen lösen?
Quadratische Gleichungen mit 2 Variablen lösen? < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Gleichungen mit 2 Variablen lösen?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:49 Sa 21.08.2004
Autor: Iron

Hi,

ich habe diese Frage in keinem weiteren Forum gestellt.

Wir haben die Aufgabe erhalten ein Punkt P zu finden der vom Punkt A (-4;2) einen Abstand von 13 besitz und ein Abstand von 25 zu Punkt B (15;-17).

Als Hilfe bekamen wir die Gleichungen:

[mm] 13= \wurzel{(x+4)^2+(y-2)^2} [/mm]
[mm] 25= \wurzel{(x-15)^2+(y+17)^2} [/mm]


Wie bekomme ich hier die x und y Werte herraus und wie geh ich vor?
Ich hoffe ich poste es nicht im Falschen Forum, aber wir nehmen es grade in der 11. durch.

Bitte hilft mir!

Vielen Dank schonmal im Vorraus!


        
Bezug
Quadratische Gleichungen mit 2 Variablen lösen?: Antwort
Status: (Antwort) fertig Status 
Datum: 22:27 Sa 21.08.2004
Autor: Marc

Hallo Iron,

[willkommenmr]

> Wir haben die Aufgabe erhalten ein Punkt P zu finden der
> vom Punkt A (-4;2) einen Abstand von 13 besitz und ein
> Abstand von 25 zu Punkt B (15;-17).
>  
> Als Hilfe bekamen wir die Gleichungen:
>  
> [mm]13= \wurzel{(x+4)^2+(y-2)^2}[/mm]
>  [mm]25= \wurzel{(x-15)^2+(y+17)^2}[/mm]

Ja, so berechnet man den Abstand zweier Punkte.
Die erste Formel sagt aus: Der Abstand der Punkte P(x|y) und A(-4|2) soll 13 betragen.
Die zweite Formel sagt aus: Der Abstand der Punkte P(x|y) und B(15|-17) soll 25 betragen.

Allgemein lautet die Formel für den Abstand zweier Punkte [mm] P_1(x_1|y_1) [/mm] und [mm] P_2(x_2|y_2): [/mm]
[mm] $d=\wurzel{(x_1-x_2)^2+(y_1-y_2)^2}$ [/mm]
Sie folgt ganz leicht, wenn du die beiden Punkte [mm] P_1 [/mm] und [mm] P_2 [/mm] in ein Koordinatensystem einträgt, sie verbindest und noch eine waagerechte und eine senkrechte Strecke einzeichnest, so dass ein rechtwinkliges Dreieck entsteht. Dann ist nämlich die gesuchte Strecke die Hypotenuse, und für sie gilt
[mm] $d^2=(x_1-x_2)^2+(y_1-y_2)^2$ [/mm] (Satz des Pythagoras)

> Wie bekomme ich hier die x und y Werte herraus und wie geh
> ich vor?

Eine Möglichkeit wäre, deine beiden Gleichungen zu quadrieren, damit die Wurzeln wegfallen.
Dann könntest du die Klammern mit den binomischen Formeln auflösen und die erste von der zweiten Gleichung subtrahieren -- du erhältst so eine (lineare) Gleichung, in der [mm] x^2 [/mm] und [mm] y^2 [/mm] weggefallen sind.
Diese lineare Gleichung kannst du nach x (oder y) auflösen, und den gewonnen Ausdruck in eine der beiden Ausgangsgleichungen einsetzen -- du hast so eine quadratische Gleichung in nur einer Variable erhalten, die du dann mit p/q-Formel oder quadratischer Ergänzung auflösen kannst.

Soviel zum Fahrplan, falls du mit ihm nicht zurecht kommst, frage bitte einfach nach, ich habe dir ja absichtlich nur die nötigsten Infos gegeben ;-)

>  Ich hoffe ich poste es nicht im Falschen Forum, aber wir
> nehmen es grade in der 11. durch.

Nein, das passt schon, jedenfalls passt es genausowenig in die anderen Foren :-)

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de