www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abbildungen und Matrizen" - Quadratische Matrix und Rang
Quadratische Matrix und Rang < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Matrix und Rang: Aufgabe1
Status: (Frage) beantwortet Status 
Datum: 02:32 Do 01.06.2006
Autor: maggi20

Aufgabe
Es sei A eine n*n-Matrix mit [mm] A^2=E(E [/mm] sei die n*n-Einheitsmatrix). Zeigen Sie, dass dann rg(A)=n ist.

Hat diese Aufgabe etwas mit der Projektionsmatrix zu tun? WEnn ja könnte mir jemand erklären was das geanu ist? Eine n*n Matrix ist eine quadratische Matrix, oder? Heisst es, dass sie dann auch regulär ist? Was muss ich hier machen? Könnte mir da bitte, bitte, bitte jemand weiterhelfenß
Liebe Grüsse
Maggi

        
Bezug
Quadratische Matrix und Rang: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:54 Do 01.06.2006
Autor: Herby

Hallo,

nur ein paar Gedanken, vielleicht könnte das ja dann jemand in eine ordentliche Notation bringen :-)

> Es sei A eine n*n-Matrix mit [mm]A^2=E(E[/mm] sei die
> n*n-Einheitsmatrix). Zeigen Sie, dass dann rg(A)=n ist.
>  Hat diese Aufgabe etwas mit der Projektionsmatrix zu tun?
> WEnn ja könnte mir jemand erklären was das geanu ist?

Eher nicht, denn die Projektionsmatrix hat in den wenigsten Fällen den vollen Rang (außer bei der Einheitsmatrix)

zudem ist eine Projektionsmatrix A²=A (idempotent)


> Eine  n*n Matrix ist eine quadratische Matrix, oder?

[ok]

>  Heisst es, dass sie dann auch regulär ist? Was muss ich hier machen?

nein, regulär heißt, dass ihre Determinante einen von Null verschiedenen Wert besitzt und dann ist [aufgemerkt] Rg(A)=n

Das wäre schon mal ein guter Anfang.

> Könnte mir da bitte, bitte, bitte jemand weiterhelfenß

Damit aus A²=A*A eine Einheitsmatrix entstehen kann, muss A mit [mm] A^{-1} [/mm] multipliziert werden. Die Inverse gibt es aber nur, wenn A regulär ist - s.o.!


erst einmal bis hier, wenn mir noch was einfällt, meld ich mich nochmal :-)



Liebe Grüße
Herby





Bezug
        
Bezug
Quadratische Matrix und Rang: Antwort
Status: (Antwort) fertig Status 
Datum: 10:09 Do 01.06.2006
Autor: DaMenge

Hallo,

Herby hat eigentlich schon eine Antwort gegeben:
weil [mm] $E=A*A^{-1}$ [/mm] folgt aus $A*A=E$, dass [mm] $A=A^{-1}$ [/mm] , insbesondere existiert die Inverse und A hat deshalb vollen Rang.

oha - ich sehe gerade, dass dies im Schulforum steht - aber die Begriffe lassen auf Uni schliessen, deshalb folgendes nur beachten, wenn alle Begriffe und Zusammenhaenge schon behandelt wurden.

Man kann dies auch über den Kern lösen : angenommen A hätte nicht vollen Rang, d.h. es gibt ein [mm] $v\not= [/mm] 0$ im Kern.
(Im Kern von A liegen alle Vektoren v, so dass $A*v=0$ und 0 liegt natuerlich immer im Kern !)

Dann ist aber $A*A*v=A*0=0$, also ist v auch im Kern von [mm] $A^2$, [/mm] was aber nicht sein kann, denn wegen [mm] $A^2*v=E*v=v$ [/mm] muss dann $v=0$, was ein Widerspruch zur Annahme ist.

hier führen also viele Wege nach Rom..

viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de