www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Quadratische Programmierung
Quadratische Programmierung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Programmierung: Bestimmung des Sattelpunktes
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:15 Mi 19.11.2014
Autor: David15

Aufgabe
Gegeben ist das folgende nichtlineare Problem:

min [mm] f(x)=(x_{1}-2)^{2}+(x_{2}-3)^{2} [/mm]

s.d. [mm] x_{1}-2x_{2}\ge{-7} [/mm]

[mm] 2x_{1}+x_{2}\le{5} [/mm]

[mm] x_{1},x_{2}\ge{0} [/mm]


(a) Geben Sie die Kuhn-Tucker-Bedingungen für obiges Problem in der Formulierung als Sattelpunkt der Lagrange-Funktion an.

(b) Überprüfen Sie, ob der Punkt [mm] P=(2;5)^{T} [/mm] ein Sattelpunkt ist.

Hallo,

ich würde gerne wissen, wie ich in Aufgabenteil (b) vorgehe. Ich habe das Problem zunächst in die Normalform überführt und dann Aufgabenteil (a) wie folgt gelöst:


Lagrange-Funktion:

[mm] L(x,u)=(x_{1}-2)^{2}+(x_{2}-3)^{2}+u_{1}*(-x_{1}+2x_{2}-7)+u_{2}*(2x_{1}+x_{2}-5) [/mm]

Notwendige Bedingungen für das Vorliegen eines Sattelpunktes:

[mm] L_{x}(x,u)=\vektor{2x_{1}-4-u_{1}+2u_{2} \\ 2x_{2}-6+2u_{1}+u_{2}}\ge0 [/mm]

[mm] L_{u}(x,u)=\vektor{-x_{1}+2x_{2}-7 \\ 2x_{1}+x_{2}-5}\le0 [/mm]

[mm] x_{1}*(2x_{1}-4-u_{1}+2u_{2})=0 [/mm]

[mm] x_{2}*(2x_{2}-6+2u_{1}+u_{2})=0 [/mm]

[mm] u_{1}*(-x_{1}+2x_{2}-7)=0 [/mm]

[mm] u_{2}*(2x_{1}+x_{2}-5)=0 [/mm]

[mm] x_{1},x_{2},u_{1},u_{2}\ge0 [/mm]


Nun zum Aufgabenteil (b). Im Skript habe ich gelesen, dass ein Punkt [mm] (x_{o},u_{0}) [/mm] Sattelpunkt von L(x,u) heißt, wenn gilt:

[mm] L(x_{0},u)\le{L}(x_{0},u_{0})\le{L}(x,u_{0})\forall{x}\in\IR^{n},x\ge0,\forall{u}\in\IR^{m},u\ge0 [/mm]


Ich würde nun gerne wissen, ob ich mit dieser Formel nachweisen kann, ob es sich beim vorliegenden Punkt um einen Sattelpunkt handelt. Was muss ich dann aber für u einsetzen? Aus den Nebenbedingungen erhalte ich diese zu

[mm] u_{1}=-\bruch{8}{5} [/mm] und [mm] u_{2}=-\bruch{4}{5} [/mm]

berechnen. Das würde dann aber die Nichtnegativitätsbedingungen verletzen. Wie würdet ihr an das Problem herangehen. Danke schon mal für eure Hilfe.



        
Bezug
Quadratische Programmierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:43 Fr 21.11.2014
Autor: David15

Hallo zusammen!

Eine Antwort zu meiner Frage würde mich nach wie vor interessieren.

Vielen Dank und viele Grüße.

Bezug
        
Bezug
Quadratische Programmierung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:34 Mo 24.11.2014
Autor: meili

Hallo David15,

> Gegeben ist das folgende nichtlineare Problem:
>  
> min [mm]f(x)=(x_{1}-2)^{2}+(x_{2}-3)^{2}[/mm]
>  
> s.d. [mm]x_{1}-2x_{2}\ge{-7}[/mm]
>  
> [mm]2x_{1}+x_{2}\le{5}[/mm]
>  
> [mm]x_{1},x_{2}\ge{0}[/mm]
>  
>
> (a) Geben Sie die Kuhn-Tucker-Bedingungen für obiges
> Problem in der Formulierung als Sattelpunkt der
> Lagrange-Funktion an.
>  
> (b) Überprüfen Sie, ob der Punkt [mm]P=(2;5)^{T}[/mm] ein
> Sattelpunkt ist.
>  Hallo,
>  
> ich würde gerne wissen, wie ich in Aufgabenteil (b)
> vorgehe. Ich habe das Problem zunächst in die Normalform
> überführt und dann Aufgabenteil (a) wie folgt gelöst:
>  
>
> Lagrange-Funktion:
>  
> [mm]L(x,u)=(x_{1}-2)^{2}+(x_{2}-3)^{2}+u_{1}*(-x_{1}+2x_{2}-7)+u_{2}*(2x_{1}+x_{2}-5)[/mm]
>  
> Notwendige Bedingungen für das Vorliegen eines
> Sattelpunktes:
>  
> [mm]L_{x}(x,u)=\vektor{2x_{1}-4-u_{1}+2u_{2} \\ 2x_{2}-6+2u_{1}+u_{2}}\ge0[/mm]
>  
> [mm]L_{u}(x,u)=\vektor{-x_{1}+2x_{2}-7 \\ 2x_{1}+x_{2}-5}\le0[/mm]
>  
> [mm]x_{1}*(2x_{1}-4-u_{1}+2u_{2})=0[/mm]
>  
> [mm]x_{2}*(2x_{2}-6+2u_{1}+u_{2})=0[/mm]
>  
> [mm]u_{1}*(-x_{1}+2x_{2}-7)=0[/mm]
>  
> [mm]u_{2}*(2x_{1}+x_{2}-5)=0[/mm]
>  
> [mm]x_{1},x_{2},u_{1},u_{2}\ge0[/mm]
>  
>
> Nun zum Aufgabenteil (b). Im Skript habe ich gelesen, dass
> ein Punkt [mm](x_{o},u_{0})[/mm] Sattelpunkt von L(x,u) heißt, wenn
> gilt:
>  
> [mm]L(x_{0},u)\le{L}(x_{0},u_{0})\le{L}(x,u_{0})\forall{x}\in\IR^{n},x\ge0,\forall{u}\in\IR^{m},u\ge0[/mm]
>  
>
> Ich würde nun gerne wissen, ob ich mit dieser Formel
> nachweisen kann, ob es sich beim vorliegenden Punkt um
> einen Sattelpunkt handelt. Was muss ich dann aber für u
> einsetzen? Aus den Nebenbedingungen erhalte ich diese zu
>
> [mm]u_{1}=-\bruch{8}{5}[/mm] und [mm]u_{2}=-\bruch{4}{5}[/mm]
>  
> berechnen. Das würde dann aber die
> Nichtnegativitätsbedingungen verletzen. Wie würdet ihr an
> das Problem herangehen. Danke schon mal für eure Hilfe.
>  
>  

Der Punkt $P = [mm] (2;5)^T$ [/mm]  verletzt die Nebenbedingungen [mm] $x_1-2x_2 \ge [/mm] -7$ und
[mm] $2x_1 +x_2 \le [/mm] 5$ (2-2*5 = -8 < -7, 2*2+5 = 9 > 5).

Kann so ein Punkt überhaupt Sattelpunkt des nichtlinearen Problems sein?

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de