www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Prozesse" - Quadratische Variation
Quadratische Variation < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Variation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:51 Do 22.04.2010
Autor: Mr.Teutone

Hallo,

zur Situation: Für [mm] $n\in\IN$ [/mm] habe ich eine Folge von Partitionen auf [mm] $(\pi_n)$ [/mm] auf $[0,t]$ mit [mm] $\pi_n=\big\{t_0,\ldots,t_{n+1}\colon 0=t_0
Nun betrachte ich die quadratische Variation [mm] $\pi(B):=\sum_{t_i\in\pi}(B_{t_{i+1}}-B_{t_i})^2$ [/mm] von [mm] $\var{B}$ [/mm] entlang der Partition [mm] $\pi$ [/mm] und will zeigen, dass [mm] $\pi_n(B)\stackrel{n\to\infty}{\longrightarrow}t$ [/mm] in [mm] $\mathcal{L}^2$ [/mm] gilt, wenn [mm] $\sup\big\{|t_{i+}-t_i|\colon t_i\in\pi_n\big\}\xrightarrow{n\to\infty}0$. [/mm]


Um die Konvergenz in [mm] $\mathcal{L}^p$ [/mm] zu erhalten, will ich zeigen, dass [mm] $\mathbb{E}\left[|\pi_n(B)-t|^2\right]\xrightarrow{n\to\infty}0$ [/mm] gilt.


Mit einer standardnormalverteilten Zufallsgröße [mm] $X\sim\mathcal{N}(0,1)$ [/mm] würde ich wie folgt anfangen:


[mm] $\mathbb{E}\left[|\pi_n(B)-t|^2\right]=\mathbb{E}\left[\left|\sum_{t_i\in\pi_n}(B_{t_{i+1}}-B_{t_i})^2-t\right|^2\right]=\mathbb{E}\left[\left|\sum_{t_i\in\pi_n}(t_{i+1}-t_i)X^2-t\right|^2\right]\stackrel{\text{Teleskopsumme}}{=}\mathbb{E}\left[\left|tX^2-t\right|^2\right]=\ldots$, [/mm]


da [mm] $B_{t_{i+1}}-B_{t_i}\stackrel{d}{=}B_{t_{i+1}-t_i}\stackrel{d}{=}\sqrt{t_{i+1}-t_i}X$ [/mm] (Gleichheit in Verteilung).





Bis hierhin müssen meine Überlegungen schon offensichtlich falsch sein, da hier nichts mehr von [mm] $\var{n}$ [/mm] abhängt und ich die Voraussetzung bzgl. der maximalen Intervalllänge auch nicht verwendet habe...

Wenn mir jemand einen Tipp geben kann, welcher Teil meiner Argumentation/Umformung falsch ist und wieso, dann bin ich ihm zu Dank verpflichtet. ;-)

        
Bezug
Quadratische Variation: Antwort
Status: (Antwort) fertig Status 
Datum: 06:36 Do 22.04.2010
Autor: felixf

Hallo!

> Mit einer standardnormalverteilten Zufallsgröße
> [mm]X\sim\mathcal{N}(0,1)[/mm] würde ich wie folgt anfangen:
>  
>
> ... [mm]\mathbb{E}\left[\left|\sum_{t_i\in\pi_n}(B_{t_{i+1}}-B_{t_i})^2-t\right|^2\right]=\mathbb{E}\left[\left|\sum_{t_i\in\pi_n}(t_{i+1}-t_i)X^2-t\right|^2\right][/mm]...

Das hier ist falsch: zwar sind [mm] $B_{t_{i+1}}-B_{t_i}$ [/mm] und [mm] $\sqrt{t_{i+1}-t_i} [/mm] X$ in Verteilung gleich, allerdings summierst du hier ein paar davon zusammen (das ist ja noch ok) und quadrierst das dann (das ist das Problem!). Beim Quadrieren hast du Produkte von der Form [mm] $(B_{t_{i+1}}-B_{t_i}) \cdot (B_{t_{j+1}}-B_{t_j})$, [/mm] und damit du die Gleichheit in Verteilung nutzen kannst, muessen die beiden Faktoren unabhaengig (bzw. zumindest nicht korreliert) sein. Aber das sind sie vermutlich nicht.

LG Felix


Bezug
                
Bezug
Quadratische Variation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:50 Do 22.04.2010
Autor: Mr.Teutone

Danke, es ist tatsächlich ein großer Unterschied, ob da [mm] $\mathbb{E}\big[(\ldots)^2\big]$ [/mm] oder [mm] (\mathbb{E}[\ldots])^2 [/mm] steht...

Den Rest bekomme ich nun, denke ich, hin, also erst ausmultiplizieren, dann die Erwartungswerte in die Summen ziehen und dann die Gleichheit in Verteilung und die Formel für das 2. und 4. Moment der Normalverteilung benutzen und zum Schluss geeignet nach oben abschätzen.

Bis zum nächsten Mal.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de