www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Quadratischer Rest
Quadratischer Rest < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratischer Rest: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:02 Sa 03.07.2010
Autor: BieneJulia

Aufgabe
Ist 17 quadratischer Rest mod 407

Hallo,

ich bin mir nicht ganz sicher, ob meine Lösung richtig ist.
Also die Frage ist ja, ob [mm] x^2 \equiv [/mm] 17 mod 407 lösbar ist.
Wenn [mm] (\bruch{17}{407}) [/mm] = 1, dann ist die Gleichung lösbar bzw. 17 quadratischer Rest mod 407. [mm] (\bruch{17}{407}) [/mm] ist das Legendresymbol.

Nun gilt [mm] (\bruch{17}{407})= (\bruch{407}{17}) [/mm] = [mm] (\bruch{16}{17}) [/mm] mit dem Gaußschen Reziprozitätsgesetz. Nun kann die 16 aufgespalten werden in 2*2*2*2 und [mm] (\bruch{2}{17}) [/mm] = 1 mit dem 2. Ergänzungssatz. Also gilt insgesamt [mm] (\bruch{17}{407}) [/mm] =1 und damit ist 17 quadratischer Rest mod 407.

Ist das so richtig?

Danke schonmal!
Lg, Julia

        
Bezug
Quadratischer Rest: Antwort
Status: (Antwort) fertig Status 
Datum: 23:21 Sa 03.07.2010
Autor: abakus


> Ist 17 quadratischer Rest mod 407
>  Hallo,
>  
> ich bin mir nicht ganz sicher, ob meine Lösung richtig
> ist.
>  Also die Frage ist ja, ob [mm]x^2 \equiv[/mm] 17 mod 407 lösbar
> ist.
>  Wenn [mm](\bruch{17}{407})[/mm] = 1, dann ist die Gleichung lösbar
> bzw. 17 quadratischer Rest mod 407. [mm](\bruch{17}{407})[/mm] ist
> das Legendresymbol.
>  
> Nun gilt [mm](\bruch{17}{407})= (\bruch{407}{17})[/mm] =
> [mm](\bruch{16}{17})[/mm] mit dem Gaußschen Reziprozitätsgesetz.
> Nun kann die 16 aufgespalten werden in 2*2*2*2 und
> [mm](\bruch{2}{17})[/mm] = 1 mit dem 2. Ergänzungssatz. Also gilt
> insgesamt [mm](\bruch{17}{407})[/mm] =1 und damit ist 17
> quadratischer Rest mod 407.

Hallo,
ich habe mal eine Wertetabelle der Reste von [mm] x^2 [/mm] mod 407 aufgestellt - der Rest 17 ist NICHT dabei.
Ich habe vom Thema - speziell von deiner Symbolik- kaum Ahnung.
Allerdings weiß ich, dass es eine Zahl x mit [mm] x^2\equiv [/mm] 16 mod 407 gibt.
Wenn es eine andere (z.B. größere) Zahl (x+a) geben würde mit [mm] (x+a)^2 \equiv [/mm] 17 mod 407, dann müsste die Differenz aus [mm] (x+a)^2 [/mm] und [mm] x^2 [/mm] den Rest 1 haben, also [mm] 2ax+a^2=a(2x+a) [/mm] müsste den Rest 1 mod 407 lassen.
Kannst du damit vielleicht was nutzbringendes aufbauen?
Gruß Abakus

>
> Ist das so richtig?
>  
> Danke schonmal!
>  Lg, Julia


Bezug
                
Bezug
Quadratischer Rest: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:31 Sa 03.07.2010
Autor: BieneJulia

Hey,

hab grad selbst gemerkt, dass das Gaußsche Reziprozitätsgesetz gar nicht anwendbar ist, weil 407 ja keine Primzahl, sondern durch 11 teilbar.
Dann muss ich es anders machen, habs auch grad gemacht und dann kommt auch raus, dass es kein Rest ist.

Aber klar mit Einsetzen gehts auch, mit den Sätzen/Gesetzen geht es natürlich nur schneller ;-)

Danke für deine Hilfe!
Lg, Julia

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de