www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Quadratmittelapproximation
Quadratmittelapproximation < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratmittelapproximation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:17 Mi 07.10.2009
Autor: marc1001

Aufgabe
Adsorbtionsprozess
p[kPa]             13  27  53
[mm] V_ads[cm^3] [/mm]  10  20  32

der durch das Langmuir - Isotherm Modell  
[mm] \bruch{V_a}{V_m} [/mm] = [mm] \bruch{k*p}{1+k*p} [/mm] beschriebn wird.

a, Reziprokentransformation und Bestimmung des linearen Modells

b, Bestimmen sie die Parameter [mm] V_m [/mm] und k durch lineare Quadratmittelapproximation im linearen Modell aus a

zu a,

durch umstellen komme ich zu
[mm] \bruch {1}{V_a} =\bruch{1}{k*V_max}*\bruch{1}{p}+\bruch{1}{V_m} [/mm]
y   = m  * x
Dann erstelle ein x,y Diagramm mit den Reziproken Werten aus der Tabelle

[mm] m=\bruch{\Delta y}{\Delta x} [/mm] =1,1853


zu b,

was ist eine Quadratmittelapproximation ?

[mm] V_m [/mm] ist doch im Prinzip der Punkte an dem die y-Achse geschnitten wird.
Ich stelle einfach nach [mm] V_m [/mm] bzw. [mm] \bruch{1}{V_m} [/mm] um und voila 114,52 bzw [mm] 8,732*10^{-3} [/mm]

Ist das nicht so einfach ? Übersehe ich hier was?

        
Bezug
Quadratmittelapproximation: Antwort
Status: (Antwort) fertig Status 
Datum: 13:39 Do 08.10.2009
Autor: MathePower

Hallo marc1001,

> Adsorbtionsprozess
>  p[kPa]             13  27  53
> [mm]V_ads[cm^3][/mm]  10  20  32
>  
> der durch das Langmuir - Isotherm Modell  
> [mm]\bruch{V_a}{V_m}[/mm] = [mm]\bruch{k*p}{1+k*p}[/mm] beschriebn wird.
>
> a, Reziprokentransformation und Bestimmung des linearen
> Modells
>  
> b, Bestimmen sie die Parameter [mm]V_m[/mm] und k durch lineare
> Quadratmittelapproximation im linearen Modell aus a
>  zu a,
>  
> durch umstellen komme ich zu
> [mm]\bruch {1}{V_a} =\bruch{1}{k*V_max}*\bruch{1}{p}+\bruch{1}{V_m}[/mm]


Soweit ist das richtig.

Da hier nach dem linearen Modell gefragt ist,
sind hier die Wertepaare [mm]\left(\bruch{1}{p}, \ \bruch{1}{V_{a}}\right)[/mm] zu betrachten.

Vereinbaren wir dazu noch ein paar Definitionen:

[mm]V_{a}':=\bruch{1}{V_{a}}[/mm]

[mm]p':=\bruch{1}{p}[/mm]

[mm]a:=\bruch{1}{k*V_{max}}[/mm]

[mm]b:=\bruch{1}{V_{max}}[/mm]


Dann steht auch schon das lineare Modell da:

[mm]V_{a}'=a*p'+b[/mm]


>  
>  y   = m  * x
>  Dann erstelle ein x,y Diagramm mit den Reziproken Werten
> aus der Tabelle
>  
> [mm]m=\bruch{\Delta y}{\Delta x}[/mm] =1,1853
>  
>
> zu b,
>
> was ist eine Quadratmittelapproximation ?


Ich nehme an, bei der Quadratmittelapproximation
handelt es sich um die []Methode der kleinsten Quadrate.

Gesucht ist diejenige Gerade, für die Summe der Abstandsquadrate
über alle Wertepaare minimal wird.

Hier wird dann

[mm]\summe_{i=1}^{3}\left(V_{a_{i}}'-a*p_{i}'-b\right)^{2} \to \operatorname{min}[/mm]

betrachtet.

Durch Differenzieren nach den Parametern a und b,
erhältst Du dann ein Gleichungssystem.


>
> [mm]V_m[/mm] ist doch im Prinzip der Punkte an dem die y-Achse
> geschnitten wird.
> Ich stelle einfach nach [mm]V_m[/mm] bzw. [mm]\bruch{1}{V_m}[/mm] um und
> voila 114,52 bzw [mm]8,732*10^{-3}[/mm]
>  
> Ist das nicht so einfach ? Übersehe ich hier was?  


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de