www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrieren und Differenzieren" - Quadraturformel herleiten
Quadraturformel herleiten < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadraturformel herleiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:06 Sa 15.01.2011
Autor: Rowdy_No

Aufgabe
Leiten sie in Abhängigkeit von s eine Quadraturformel
[mm] \integral_{-1}^{1}{g(t) dt} \to a_{s}g(-s) [/mm] + [mm] b_{s}g(s) [/mm]
her, indem Sie g(t) durch ein Interpolationspolynom zu den Stützstellen [mm] x_{0} [/mm] = -s und [mm] x_{1} [/mm] = -s mit 0 < s < 1 annähern und dieses integrieren. Geben sie eine Abschätzung für den Quadraturfehler an, indem Sie den Interpolationsfehler über dem Intervall [-1,1] integrieren.

Ich habe jetzt ein Interpolationspolynom mittels Lagrange-Interpolation hergeleitet und bin damit bei
[mm] p(t)=(\bruch{g(s)-g(-s)}{2s})t+\bruch{1}{2}(g(s)+g(-s)) [/mm]
angelangt.
Ich weiß jetzt allerdings nicht genau, wie ich den nächsten Schritt, also die Integration dessen durchführen soll.
Kann mir jemand das Polynom bestätigen und falls es richtig ist einen Tipp in die richtige Richtung geben? Danke schonmal im Vorraus :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Quadraturformel herleiten: Antwort
Status: (Antwort) fertig Status 
Datum: 21:47 Sa 15.01.2011
Autor: MathePower

Hallo Rowdy_No,


[willkommenmr]


> Leiten sie in Abhängigkeit von s eine Quadraturformel
>  [mm]\integral_{-1}^{1}{g(t) dt} \to a_{s}g(-s)[/mm] + [mm]b_{s}g(s)[/mm]
>  her, indem Sie g(t) durch ein Interpolationspolynom zu den
> Stützstellen [mm]x_{0}[/mm] = -s und [mm]x_{1}[/mm] = -s mit 0 < s < 1
> annähern und dieses integrieren. Geben sie eine
> Abschätzung für den Quadraturfehler an, indem Sie den
> Interpolationsfehler über dem Intervall [-1,1]
> integrieren.
>  Ich habe jetzt ein Interpolationspolynom mittels
> Lagrange-Interpolation hergeleitet und bin damit bei
>  [mm]p(t)=(\bruch{g(s)-g(-s)}{2s})t+\bruch{1}{2}(g(s)+g(-s))[/mm]
>  angelangt.
> Ich weiß jetzt allerdings nicht genau, wie ich den
> nächsten Schritt, also die Integration dessen durchführen
> soll.
> Kann mir jemand das Polynom bestätigen und falls es


Das Interpolationspolynom ist richtig.


> richtig ist einen Tipp in die richtige Richtung geben?


Integriere dies jetzt zwischen den Grenzen -1 und 1.


> Danke schonmal im Vorraus :)
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
Quadraturformel herleiten: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:06 So 16.01.2011
Autor: Rowdy_No

Danke fürs Helfen und fürs Willkommen ^^
Das Ganze auf [-1,1] integriert bringt mich auf
g(s)+g(-s)
Hab ich dann damit meine [mm] a_{s} [/mm] und [mm] b_{s} [/mm] bestimmt?
Wenn ich den Quadraturfehler durch Integration des Interpolationsfehlers bestimmen soll, heißt das dann einfach
[mm] \integral_{-1}^{1}{|g(t)-g(s)-g(-s)| dt} [/mm]
zu berechnen?

Bezug
                        
Bezug
Quadraturformel herleiten: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Di 18.01.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de