Quadraturspektrum < Stochastik < Hochschule < Mathe < Vorhilfe
|
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
ich wusste nicht, wo das hingehört, deswegen poste ich das mal hierhin.
Ich möchte wissen, was man mit dem Quadraturspektrum misst.
Ich weiss, dass das der Imaginärteil des Kreuzspektrums ist. Und es misst wohl scheinbar etwas das "a quarter of a cycle out of phase " ist. Was bedeutet das?
Grüsse
M.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:05 Di 12.10.2004 | Autor: | Stefan |
Lieber Markus!
Nehmen wir mal an, wir haben zwei Stichprobenreihen [mm] $y_1,\ldots,y_T$ [/mm] und [mm] $x_1,\ldots,x_T$ [/mm] zweier Zufallsvariablen.
Diese stellen wir spektral dar:
[mm] $y_t [/mm] = [mm] \bar{y} [/mm] + [mm] \sum\limits_{j=1}^{\frac{T-1}{2}} \left\{\hat{\alpha_j} \cdot \cos\left[ \frac{2\pi j}{T}(t-1) \right] + \hat{\delta_j} \cdot \sin \left[ \frac{2\pi j}{T}(t-1) \right] \right\}$,
[/mm]
[mm] $x_t [/mm] = [mm] \bar{x} [/mm] + [mm] \sum\limits_{j=1}^{\frac{T-1}{2}} \left\{\hat{a_j} \cdot \cos\left[ \frac{2\pi j}{T}(t-1) \right] + \hat{a_j} \cdot \sin \left[ \frac{2\pi j}{T}(t-1) \right] \right\}$,
[/mm]
mit
[mm] $\hat{\alpha_j} [/mm] = [mm] \frac{2}{T} \sum\limits_{t=1}^T y_t \cdot \cos \left[ \frac{2 \pi j}{T} \cdot (t-1) \right]$,
[/mm]
[mm] $\hat{\delta_j} [/mm] = [mm] \frac{2}{T} \sum\limits_{t=1}^T y_t \cdot \sin \left[ \frac{2 \pi j}{T} \cdot (t-1) \right]$,
[/mm]
[mm] $\hat{a_j} [/mm] = [mm] \frac{2}{T} \sum\limits_{t=1}^T x_t \cdot \cos \left[ \frac{2 \pi j}{T} \cdot (t-1) \right]$,
[/mm]
[mm] $\hat{d_j} [/mm] = [mm] \frac{2}{T} \sum\limits_{t=1}^T x_t \cdot \sin \left[ \frac{2 \pi j}{T} \cdot (t-1) \right]$.
[/mm]
Dann ist das Quadratspektrum gegeben durch
(*) [mm] $\hat{q}_{xy}\left(\frac{2\pi j}{T}\right) [/mm] = [mm] \frac{T}{8 \pi} \cdot \left( \hat{d_j} \hat{\alpha_j} - \hat{a_j} \hat{\delta_j} \right)$.
[/mm]
(Dies ist gerade der Imaginärteil des "Kreuzspektrums" (so wie du es genannt hast).)
Macht man nun die genannte Verschiebung "a quarter of a cycle out of phase", die du angesprochen hast, d.h. geht man zu den Ausdrücken
[mm] $x_t^{\*} [/mm] = [mm] \bar{x} [/mm] + [mm] \sum\limits_{j=1}^{\frac{T-1}{2}} \left\{\hat{a_j} \cdot \cos\left[ \frac{2\pi j}{T}(t-1) + \frac{\pi}{2} \right] + \hat{a_j} \cdot \sin \left[ \frac{2\pi j}{T}(t-1) + \frac{\pi}{2}\right] \right\}$
[/mm]
über, dann kann man zeigen, dass die (Stichproben-)Kovarianz von [mm] $y_t$ [/mm] und [mm] $x_t^{\*}$ [/mm] gerade durch
(**) [mm] $\frac{1}{2} \sum\limits_{j=1}^{\frac{T-1}{2}} \cdot \left( \hat{d_j} \hat{\alpha_j} - \hat{a_j} \hat{\delta_j} \right)$
[/mm]
gegeben ist.
Jetzt vergleiche mal (*) und (**), dann weißt du, was gemeint war.
Liebe Grüße
Stefan
|
|
|
|
|
Ich habe jetzt hier zwei Zeitreihen X(t) , Y(t).
Heisst das jetzt dass das Cospektrum Informationen über die Elemente der ZR liefert die "in Phase" (heisst das so?) sind und das Quadraturspektrum über die Elemente die um [mm] \pi/2 [/mm] verschoben sind?
|
|
|
|