www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Quadrik uÄ
Quadrik uÄ < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadrik uÄ: Wie Aufgaben lösen?
Status: (Frage) beantwortet Status 
Datum: 10:39 Fr 03.08.2007
Autor: diecky

Aufgabe
1) Gegeben sei A = [mm] \pmat{ 2 & 1 & 1 \\ 1 & a & 0 \\ 1 & 0 & 2} [/mm]
Für welche Werte von a [mm] \in \IR [/mm] hat die Matrix A maximalen Rang?
Für welche Werte von a [mm] \in \IR [/mm]  steht der zweite Spaltenvektor senkrecht auf dem ersten Spaltenvektor bzw der dritte Zeilenvektor senkrecht zum ersten Zeilenvektor?
Für welche Werte von a ist [mm] \lambda [/mm] = 2 ein Eigenwert von A?

2) Welchen Typ hat die Quadrik q(x) = -10x + 8y + 13 z + 12?

Kann mir jemand helfen wie ich bei den Aufgaben vorgehe?

zu Aufg1: maximaler Rang bestimme ich doch dadurch, dass ich schaue wieviele linear unabhängigen Spalten meine Matrix hat und maximal bedeutet in diesem Falle, dass er 3 wäre, oder? Aber irgendwie verwirrt mich bei dieser gesamten Aufgabe das a...und die Orthogonalität prüft man sicherlich mit dem Skalarprodukt,oder?!

zu Aufg2: prinzipiell weiß ich dieser Typ von Aufgaben funktioniert, jedoch habe ich diese bisher IMMER nur mit quadratischen Funktionen gelöst und das verwirrt mich jetzt total.... wenn ich die Matrix folgendermaßen aufstelle:
[mm] \vektor{x \\ y} \pmat{ -10 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 14}+12 [/mm]
bekomme ich die Eigenwerte -10, 8 und 14 raus, was laut Lösung aber falsch ist?! Wie komm ich denn auf 3,6 und 9 als EW?

Danke!

        
Bezug
Quadrik uÄ: zur ersten Aufgabe
Status: (Antwort) fertig Status 
Datum: 10:56 Fr 03.08.2007
Autor: Bastiane

Hallo diecky!

> 1) Gegeben sei A = [mm]\pmat{ 2 & 1 & 1 \\ 1 & a & 0 \\ 1 & 0 & 2}[/mm]
>  
> Für welche Werte von a [mm]\in \IR[/mm] hat die Matrix A maximalen
> Rang?
>  Für welche Werte von a [mm]\in \IR[/mm]  steht der zweite
> Spaltenvektor senkrecht auf dem ersten Spaltenvektor bzw
> der dritte Zeilenvektor senkrecht zum ersten Zeilenvektor?
>  Für welche Werte von a ist [mm]\lambda[/mm] = 2 ein Eigenwert von
> A?

Du kannst auch einfach die Determinante dieser Matrix berechnen - wenn sie [mm] \not= [/mm] 0 ist, hat sie auch maximalen Rang.
Für die Orthogonalität würde ich auch mit dem Skalarprodukt rechnen, allerdings frage ich mich, wie das a den dritten oder ersten Zeilenvektor ändert - meiner Meinung nach stehen diese beiden entweder jetzt schon senkrecht (bin gerade zu faul das nachzuprüfen) oder sie stehen es auch für kein einziges a.

Viele Grüße
Bastiane
[cap]

Bezug
        
Bezug
Quadrik uÄ: Quadrik ohne Quadrate...
Status: (Antwort) fertig Status 
Datum: 12:08 Fr 03.08.2007
Autor: kochmn

Hallo Diecky,

ich habe die finstere Vermutung, dass Du bei Deiner "Quadrik"
die Form

0 = -10x + 8y + 13 z + 12

gemeint hast.

Das ist jedoch keine Quadrik, sondern eine stinknormale
Ebenengleichung.

Liebe Grüße,
  Markus-Hermann.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de