Qualitätskontrolle/Verteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:51 Sa 04.12.2010 | Autor: | etoxxl |
Aufgabe | Ein Buch enthält n Seiten. Es treten unabhängig Tippfehler auf den n Seiten mit der WS p auf. Die ZV X gibt die Anzahl der vorliegenden fehlerhaften Seiten an. Zur Kontrolle werden m Seiten (m<n) ausgesucht und auf Fehler geprüft.
Sei Y die ZV, die die Anzahl der fehlerhaften Seiten in dieser Stichprobe m angibt.
a) Bestimme Verteilung von X und die bedingte Verteilung Y gegeben {X=k}
b)Zeige, dass Y und Z=X-Y unabhängig sind und bestimme die gemeinsame Verteilung. |
Zunächst eine Frage zu a)
Wenn ich mich nicht irre handelt es sich hier um die Binomialverteilung, also
[mm] P(X=k)=\vektor{n \\ k}p^k (1-p)^{n-k}
[/mm]
dann gilt für Y: [mm] P(Y=k)=\vektor{m \\ k}p^k (1-p)^{m-k}
[/mm]
Dann ist P(Y=k | X=k) = [mm] \bruch{P(Y=k \cap X=k)}{P(X=k)}=(Da [/mm] Y Teilmenge von X ist) = [mm] \bruch{P(Y=k)}{P(X=k)}
[/mm]
Bin mir hier aber nicht sicher, bin da auf dem richtigen Weg?
|
|
|